合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

        COMP3009J代做、代寫Python程序設計

        時間:2024-05-29  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



        COMP3009J – Information Retrieval 
        Programming Assignment 
         
        This assignment is worth 30% of the final grade for the module. 
        Due Date: Friday 31th May 2024 at 23:55 (i.e. end of Week 14) 
         
        Before you begin, download and extract the files ``small_corpus.zip’’ and ``large_corpus.zip’’ 
        from Brightspace. These contain several files that you will need to complete this assignment. 
        The README.md file in each describes the files contained in the archive and their format
        1

         
        The main objective of the assignment is to create a basic Information Retrieval system that 
        can perform preprocessing, indexing, retrieval (using BM25) and evaluation. 
         
        The small corpus is intended to show the correctness of your code. The large corpus is 
        intended to show the efficiency. Efficiency is only important if the code is firstly correct. 
         
        Both corpora are in the same format, except for the relevance judgments. For the small 
        corpus, all documents not included in the relevance judgments have been judged nonrelevant.
        For the large corpus, documents not included in the relevance judgments have not 
        been judged. 
         
        For this assignment, you should write several independent programs, each of which is 
        contained in one file2. The list of programs is below, with descriptions of each. You may 
        choose not to implement all the programs (see the “Grading” section below). However, an A+ 
        grade can only be awarded if all these programs have been written correctly and efficiently. 
         
        It is ESSENTIAL that all programs can be run as a standalone command-line program, without 
        requiring an IDE/environment such as IDLE, PyCharm, Jupyter, etc. 
         
        Non-standard libraries (other than the Porter stemmer provided) may not be used. Do not 
        use absolute paths (the path to the corpus will always be provided to your program). 
         
        What you should submit 
         
        Submission of this assignment is through Brightspace. You should submit a single .zip archive 
        containing the programs you have written. 
         
        1 This is a Markdown file. Although you can open and read it as plain text, proper 
        programming editor (e.g. Visual Studio Code) will provide syntax highlighting for better 
        readability. 
        2 Here, “independent programs” means that they should not import anything from one 
        another. If you write a function that is helpful in multiple programs, copy/paste it. This is, of 
        course, not good programming practice in terms of reusability of code. However, it helps 
        with the grading process. Programs: 
        index_small_corpus.py 
         
        This program is intended to read the small corpus, process its contents and create an index. 
         
        It must be possible to pass the path to the (unzipped) small corpus to this program as a 
        command-line argument named “-p”3: 
         
        ./index_small_corpus.py -p /path/to/comp3009j-corpus-small 
         
        This program must perform the following tasks: 
         
        1. Extract the documents contained in the corpus provided. You must divide the documents 
        into terms in an appropriate way (these are contained in the ``documents’’ directory of the 
        corpus. The strategy must be documented in your source code comments. 
         
        2. Perform stopword removal. A list of stopwords to use can be loaded from the 
        stopwords.txt file that is provided in the ``files’’ directory of the corpus. 
         
        3. Perform stemming. For this task, you may use the porter.py code in the ``files’’ 
        directory. 
         
        4. Create an appropriate index so that IR using the BM25 method may be performed. Here, 
        an index is any data structure that is suitable for performing retrieval later. 
         
        This will require you to calculate the appropriate weights and do as much pre-calculation as 
        you can. This should be stored in a single external file in some human-readable4 format. Do 
        not use database systems (e.g. MySQL, SQL Server, SQLite, etc.) for this. 
         
        The output of this program should be a single index file, stored in the current working 
        directory, named “21888888-small.index” (replacing “21888888” with your UCD 
        student number). 
         
         
         
        3 This path might, for example be “/Users/david/datasets/comp3009j-corpussmall”
        or “C:/Users/datasets/comp3009j-corpus-small”. 
        4 Here, “human-readable” means some text-based (i.e. non-binary) format. It should be 
        possible to see the contents and the structure of the index using a standard text editor. query_small_corpus.py 
         
        This program allows a user to submit queries to retrieve from the small corpus, or to run the 
        standard corpus queries so that the system can be evaluated. The BM25 model must be used 
        for retrieval. 
         
        Every time this program runs, it should first load the index into memory (named “21888888-
        small.index” in the current working directory, replacing “21888888” with your UCD student 
        number), so that querying can be as fast as possible. 
         
        This program should offer two modes, depending on a command-line argument named “-
        m”. These are as follows: 
         
        1. Interactive mode 
         
        In this mode, a user can manually type in queries and see the first 15 results in their 
        command line, sorted beginning with the highest similarity score. The output should have 
        three columns: the rank, the document’s ID, and the similarity score. A sample run of the 
        program is contained later in this document. The user should continue to be prompted to 
        enter further queries until they type “QUIT”. 
         
        Example output is given below. 
         
        Interactive mode is activated by running the program in the following way: 
         
        ./query_small_corpus.py -m interactive -p /path/to/comp3009j-corpus-small 
         
        2. Automatic mode 
         
        In this mode, the standard queries should be read from the ``queries.txt’’ file (in the 
        ``files’’ directory of the corpus). This file has a query on each line, beginning with its 
        query ID. The results5 should be stored in a file named “218888880-small.results" 
        in the current working directory (replacing “21888888” with your UCD student number), 
        which should include four columns: query ID, document ID, rank and similarity score. A 
        sample of the desired output can be found in the “sample_output.txt” file in the 
        “files” directory in the corpus. 
         
        Automatic mode is activated by running the program in the following way: 
         
        ./query_small_corpus.py -m automatic -p /path/to/comp3009j-corpus-small 
         
         
         
        5 You will need to decide how many results to store for each query. evaluate_small_corpus.py 
         
        This program calculates suitable evaluation metrics, based on the output of the automatic 
        mode of query_small_corpus.py (stored in “218888880-small.results" in the 
        current working directory (replacing “21888888” with your UCD student number). 
         
        The program should calculate the following metrics, based on the relevance judgments 
        contained in the ``qrels.txt’’ file in the ``files’’ directory of the corpus): 
        - Precision 
        - Recall 
        - R-Precision 
        - P@15 
        - NDCG@15 
        - MAP 
         
        The program should be run in the following way: 
        ./evaluate_small_corpus.py -p /path/to/comp3009j-corpus-small 
         index_large_corpus.py 
         
        This program should perform the same tasks as index_small_corpus.py, except that the 
        output file should be named “21888888-large.index” (replacing “21888888” with your 
        UCD student number). 
         
        query_large_corpus.py 
         
        This program should perform the same tasks as query_small_corpus.py, except that the 
        output results file should be named “21888888-large.results” (replacing “21888888” 
        with your UCD student number). 
         
        evaluate_large_corpus.py 
         
        In addition to the evaluation metrics calculated by evaluate_small_corpus.py, this 
        program should also calculate bpref (since the large corpus has incomplete relevance 
        judgments). 
         
        Otherwise, this program should perform the same tasks as evaluate_small_corpus.py, 
        except that the input results file should be named “21888888-large.results” (replacing 
        “21888888” with your UCD student number). 
         
         Sample Run (Interactive) 
        $ ./query_small_corpus.py -m interactive -p /Users/david/comp3009j-corpus-small 
        Loading BM25 index from file, please wait. 
        Enter query: library information conference 
         
        Results for query [library information conference] 
        1 928 0.991997 
        2 1109 0.984280 
        3 1184 0.979530 
        4 309 0.96**75 
        5 533 0.918940 
        6 710 0.912594 
        **88 0.894091 
        8 1311 0.8**748 
        9 960 0.845044 
        10 717 0.833753 
        11 77 0.829261 
        12 1129 0.821643 
        13 783 0.817639 
        14 1312 0.804034 
        15 423 0.795264 
        Enter query: QUIT 
        Note: In all of these examples, the results, and similarity scores were generated at random for 
        illustration purposes, so they are not correct scores. 
        Sample Run (Evaluation) 
        $ ./evaluate_large_corpus.py -p /Users/david/comp3009j-corpus-large 
         
        Evaluation results: 
        Precision: 0.138 
        Recall: 0.412 
        R-precision: 0.345 
        P@15: 0.621 
        NDCG@15 0.123 
        MAP: 0.253 
        bpref: 0.345 
         
         Grading 
         
        Grading is based on the following (with the given weights)6: 
        - Document reading and preprocessing: 15% 
        - Indexing: 20% 
        - Retrieval with BM25: 20% 
        - Evaluation: 15% 
        - Efficiency: 15% (as evidenced by the performance on the large corpus) 
        - Programming style (comments/organisation): 15% 
         
        Other notes 
        1. This is an individual assignment. All code submitted must be your own work. Submitting the work 
        of somebody else or generated by AI tools such as ChatGPT is plagiarism, which is a serious 
        academic offence. Be familiar with the UCD Plagiarism Policy and the UCD School of Computer 
        Science Plagiarism Policy. 
        2. If you have questions about what is or is not plagiarism, ask! 
         
        Document Version History 
        v1.0: 2024-04-26, Initial Version. 
         
        6This assignment will be graded using the “Alternative Linear Conversion Grade Scale 40% 
        Pass” Mark to Grade Conversation Scale: 

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






















         

        掃一掃在手機打開當前頁
      1. 上一篇: XJCO1921代做、代寫c/c++編程語言
      2. 下一篇:菲律賓商務簽證入境稅費 菲律賓商務簽證的辦理材料
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
        急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發(fā)動機性能
        挖掘機濾芯提升發(fā)動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

        關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權所有
        ICP備06013414號-3 公安備 42010502001045

        亚洲精品无码午夜福利中文字幕 | 国产精品香蕉在线观看不卡| 精品亚洲麻豆1区2区3区| 久久丝袜精品中文字幕| 婷婷久久精品国产| 亚洲日韩亚洲另类激情文学| 国产精品亚洲专区无码不卡| 精品国产一区二区三区AV| 国产精品久久久久9999| 中国精品白嫩bbwbbw| 亚洲午夜久久久精品影院| 九九精品成人免费国产片| 亚洲乱码精品久久久久..| 91精品国产综合久久婷婷| 精品视频一区二区三区四区五区| 伊人久久精品影院| 日韩在线视频免费看| 揄拍自拍日韩精品| 日韩三级草久国产| 国产四虎精品8848hh| 国产精品天天在线午夜更新| 国产成人午夜精品一区二区三区| 精品动漫一区二区无遮挡| 97久久超碰成人精品网站| 国产精品久久永久免费| 久久精品国产免费观看| 亚洲av产在线精品亚洲第一站| 91www永久在线精品果冻传媒| 97在线视频精品| 1313午夜精品久久午夜片| 精品少妇无码AV无码专区| 久久99精品久久久久久动态图 | 日韩精品国产一区| 精品久久久久久久免费加勒比| 最新国产精品自在线观看| 精品久久久无码中文字幕边打电话 | 精品国产高清自在线一区二区三区| 国产精品无码免费播放| 国语精品91自产拍在线观看二区| 精品剧情v国产在线麻豆| 国产精品夜夜爽范冰冰|