合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代做3DA3 C02、Java/python編程代寫
        代做3DA3 C02、Java/python編程代寫

        時間:2024-10-21  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



        Assignment 1, Commerce 3DA3 C02 - Predictive Data Analytics
        To complete this assignment, please create a Jupyter notebook. The code in your jupyter notebook should provide answers to questions asked in the assignment. Please submit the assignment by uploading the file(s) into the "Assignment 1" folder on Avenue to Learn. You can find this folder under "Assessments>Assignments" on the course page. The deadline for submission is 11:59PM on Monday Oct. 21.
        Background
        In the past decade, we witnessed the rise of online grocery shopping. With the convenience of ordering groceries from the comfort of home, more people are turning to digital platforms for their everyday needs. This shift has been further fueled by factors such as busy lifestyles, the increasing use of mobile devices, and the covid-19 pandemic, which underscored the importance of contactless shopping.
        For online grocery platforms, conducting data analysis on sales records is critical for understanding customer behavior, enhancing the overall shopping experience, and make data-driven decisions that lead to higher customer satisfaction and profitability.
        Data: We will make use of two datasets from the transaction records of an online grocery delivery platform, stored in the files orders.csv (click to download) and order_products.csv (click to download).
        The dataset in orders.csv includes the following columns:
        order_id: This is the unique identifier of every customer order
        customer_id: This is the unique identifier of every customer who placed the order order_dow: This indicates the day of the week, on which the order took place. 0 stands for Sunday, **5 indiates Monday-Friday, and 6 indicates a Saturday. order_hour_of_day: This indicates during which hour the order took place; for example, 14 indicates that the order was placed between 14:00 and 14:59. days_since_prior_order: This indicates how many days have passed since the customer's last order
        coupon_use: This shows if the customer used a coupon to (partially) pay for the order
        The dataset in order_products.csv records which products are purchased in an order. It

         includes the following columns:
        order_id: This is the order idenfitier (same as in order.csv).
        product_id: This is the identifier of a product that is purchased in the corresponding order.
        quantity: This is the quantity of the product purchased in the corresponding order. unit_price: This is the unit price (in dollars) of the product purchased in the corresponding order.
        customer_id: This is the identifier of the customer who purchased the product.
        Please note that order_id in order_products.csv does not need to be unique. If two rows in order_products.csv share the same order_id, it means that in the same order, the products in those two rows are both purchased.
        For example, suppose that the following row exists in order.csv:
        order_id customer_id order_dow order_hour_of_day days_since_prior_order coupon_u
        O1234 C6217 2 10 11 yes and the following two rows exist in order_products.csv:
                 order_id
        O1234
        O1234
        product_id quantity
        P0217 1
        P0219 2
        unit price customer_id
        9.99 C6217
        19.99 C6217
                 then we know that in the same order (order_id O1234), 1 unit of product P0217 and 2 units of product P0219 are purchased. And this order O1234 is the same order as the order O1234 in order.csv.
        Imagine that you are a data analyst at the grocery delivery platform. Based on the datasets, please answer the following questions/tasks.
        Questions 0.
        In the first cell of your Jupyter notebook, please create the following as markdown. Add your first and last name, and your Student ID.
        se

          Important: For the remaining questions, please make sure to create a markdown cell before you answer each question and in it indicate the question number, e.g., Question 1, Question 2, etc.
        For each question, you should use one or more code cells to present your codes. Please make sure that you run each cell and display all the requested results. Please also ensure that you will use markdown cells to provide necessary explanations of your codes and results.
        The Jupyter notebook should be a easy-to-read report that presents your analysis and results. The grading will be based on both the correctness of your coding and the readability of your notebook.
        Question 1.
        Import the two .csv files and assign them to a dataframe called df_orders and df_order_products , respectively. Then,
        use a line of codes to review the first few rows of the dataframes. The result should be clearly displayed in the notebook after you run the code cells.
        get the structures of the dataframes (number of rows, column types, etc.) using the
        info() function. Review the first few rows of the dataframe.
        In a markdown cell,explain the results returned by this function as comprehensive as you
        can..
        Question 2.
        For the DataFrame df_orders loaded from orders.csv, perform the following steps in the given order.
        1. Find how many missing value each column contains.
        2. For any missing value in the column   , replace it with 'unknown_order'
        3. For any missing value in the column   , replace it with
             'unknown_customer'
        order_id
        customer_id

         4. For any missing value in the column   , replace it with the mean value of the column
        5. After completing the above steps, repeat the codes in Step 1 to check again the number of missing values in each column
        6. For any remaining missing values, drop all rows containing a missing value
        Question 3.
        The grocery delivery platform is interested in assessing if offering coupons will increase customers' purchase frequency. To that end, let us again make use of the DataFrame
        df_orders (loaded from orders.csv) to perform the following tasks.
        1. Select all rows in df_orders where use of a coupon is yes , and assign those rows as a new DataFrame named df_orders_coupon .
        2. Calculate the mean value of 'days_since_prior_order' in df_orders_coupon .
        3. Select all rows in where use of a coupon is no , and assign those rows
        as a new DataFrame named .
        4. Calculate the mean value of 'days_since_prior_order' in df_orders_no_coupon .
        Based on your findings of the above steps, answer the following question in a markdown cell:
        Is the use of coupon associated with higher/lower order frequency? Please briefly explain your answer in the markdown cell.
        Questions 4.
        The platform is also interested in measuring the total number of orders received on each day of the week. To do this, they would like you to complete the following tasks.
        Divide the order id's in the 'order_id' column of the DataFrame df_orders (loaded from orders.csv) into groups, based on the day of the week ('order_dow') when the order is placed. The result should be a Groupby object.
        Construct and display the content of a pandas Series, which should show the total number of orders for each day of the week.
        Question 5.
        As observed, each row of the data in order_products.csv is the sales information of a product in a certain order. The information includes the per-unit price and number of units ordered, but it does not directly provide the revenue.
             df_orders
         df_orders_no_coupon
           days_since_prior_order

         Let us now create a new column named 'revenue' in the DataFrame df_order_products constructed from order_products.csv. For each row, the
        column should contain the corresponding revenue, calcuated as 'quantity'×'unit price'. See the following two-row example for a demonstration.
        order_id product_id quantity unit_price customer_id revenue
        O1234 P0217 1 9.99 C6217 9.99
        O1234 P0219 2 19.99 C621**9.98
        After you have added the new column, further complete the following tasks:
        Display the first few rows of the updated df_order_products DataFrame. Calculate the total revenue by summing up revenues in each row.
        Question 6
        From time to time, there will be customers who would like to review their purchase record. To do that, they will need to supply their customer id.
        Suppose a customer with the id '0421MWMT' just contacted Customer Service and would like to see all their purchases. Perform the following tasks for the customer.
        Select all rows related to this customer's purchases in the DataFrame df_order_products (loaded from order_products.csv), and assign them to a
        new DataFrame named 'df_cust_inquiry'. Display the content of this DataFrame. Calculate the customer's total purchase in dollar amount.
                      
        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



         

        掃一掃在手機(jī)打開當(dāng)前頁
      1. 上一篇:INT 404代做、代寫Matlab程序設(shè)計
      2. 下一篇:愛旭股份連續(xù)五年穩(wěn)居全球新能源500強(qiáng)行列,技術(shù)創(chuàng)新再獲認(rèn)可
      3. 無相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        出評 開團(tuán)工具
        出評 開團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動機(jī)性能
        戴納斯帝壁掛爐全國售后服務(wù)電話24小時官網(wǎng)400(全國服務(wù)熱線)
        戴納斯帝壁掛爐全國售后服務(wù)電話24小時官網(wǎng)
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話24小時服務(wù)熱線
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話2
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時客服熱線
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場巴士4號線
        合肥機(jī)場巴士4號線
        合肥機(jī)場巴士3號線
        合肥機(jī)場巴士3號線
      4. 短信驗證碼 酒店vi設(shè)計

        无码人妻精品中文字幕免费东京热| 国内精品久久九九国产精品| 国产成人精品免费大全| 亚洲精品美女在线观看播放| 久久国产成人精品麻豆| 国产色婷婷精品综合在线| 亚洲爆乳精品无码一区二区| 99久热re在线精品视频| 国产精品美女一区二区视频| 中文字幕日韩精品有码视频| 99这里只有精品| 国产一成人精品福利网站| 国产精品视频全国免费观看| 夜夜精品无码一区二区三区| 日韩精品一区在线| 久久综合日韩亚洲精品色| 国产69精品久久久久妇女| 亚洲精品资源在线| 亚洲国产精品自在在线观看| 国产精品国产三级国产AV主播| 亚洲综合精品香蕉久久网| 97久久综合精品久久久综合| 国产精品无码一区二区在线观一 | 精品一区二区三区视频| 久久精品国产男包| 久久久亚洲精品国产| 色婷婷久久久SWAG精品| 日韩一区二区三区无码影院| 国产午夜亚洲精品不卡电影| 久久精品免费一区二区| 99re热久久精品这里都是精品| 久九九久福利精品视频视频| 国内精品人妻无码久久久影院| 亚洲日韩精品无码专区网址| 99re这里只有精品国产精品| 中文字幕精品在线视频| 日韩人妻一区二区三区免费| 国产SUV精品一区二区88L| 色婷婷色综合激情国产日韩| 中文字幕51日韩视频| 亚洲欧美日韩一区二区三区|