合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代做MA2552、代寫Matlab編程設計

        時間:2023-12-15  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


        MA2552 Introduction to Computing (DLI) 2023/24

        Computational Project

        Aims and Intended Learning Outcomes

        The aims of the Project are to describe methods for solving given computational problems, develop and test Matlab code implementing the methods, and demonstrate application

        of the code to solving a specific computational problem. In this Project, you be will be required to demonstrate

        • ability to investigate a topic through guided independent research, using resources

        available on the internet and/or in the library;

        • understanding of the researched material;

        • implementation of the described methods in Matlab;

        • use of the implemented methods on test examples;

        • ability to present the studied topic and your computations in a written Project Report.

        Plagiarism and Declaration

        • This report should be your independent work. You should not seek help from other

        students or provide such help to other students. All sources you used in preparing your

        report should be listed in the References section at the end of your report and referred

        to as necessary throughout the report.

        • Your Project Report must contain the following Declaration (after the title page):

        DECLARATION

        All sentences or passages quoted in this Project Report from other people’s work have

        been specifically acknowledged by clear and specific cross referencing to author, work and

        page(s), or website link. I understand that failure to do so amounts to plagiarism and

        will be considered grounds for failure in this module and the degree as a whole.

        Name:

        Signed: (name, if submitted electronically)

        Date:

        Project Report

        The report should be about 6-8 pages long, written in Word or Latex. Equations should

        be properly formatted and cross-referenced, if necessary. All the code should be included in

        the report. Copy and paste from MATLAB Editor or Command Window and choose ‘Courier

        New’ or another fixed-width font. The Report should be submitted via Blackboard in a single

        file (Word document or Adobe PDF) and contain answers to the following questions:

        1

        MA2552 Introduction to Computing (DLI) 2023/24

        Part 0: Context

        Let f(x) be a periodic function. The goal of this project is to implement a numerical method

        for solving the following family of ordinary differential equations (O.D.E):

        an

        d

        nu(x)

        dxn

        + an−1

        d

        n−1u(x)

        dxn−1

        + . . . + a0u(x) = f(x), (1)

        where ak, k = 0, · · · , n, are real-valued constants. The differential equation is complemented

        with periodic boundary conditions:

        d

        ku(−π)

        dxk

        =

        d

        ku(π)

        dxk

        for k = 0, · · · , n − 1.

        We aim to solve this problem using a trigonometric function expansion.

        Part 1: Basis of trigonometric functions

        Let u(x) be a periodic function with period 2π. There exist coefficients α0, α1, α2, . . ., and

        β1, β2, . . . such that

        u(x) = X∞

        k=0

        αk cos(kx) +X∞

        1

        βk sin(kx).

        The coefficients αk and βk can be found using the following orthogonality properties:

        Z π

        −π

        cos(kx) sin(nx) dx = 0, for any k, n

        Z π

        −π

        cos(kx) cos(nx) dx =

        ɽ**;?**0;

        ɽ**;?**1;

        0 if k ̸= n

        π if k = n ̸= 0

        2π if k = n = 0.

        Z π

        −π

        sin(kx) sin(nx) dx =

        (

        0 if k ̸= n

        π if k = n ̸= 0.

        1. Implement a function that takes as an input two function handles f and g, and an

        array x, and outputs the integral

        1

        π

        Z π

        −π

        f(x)g(x) dx,

        using your own implementation of the Simpson’s rule scheme. Corroborate numerically

        the orthogonality properties above for different values of k and n.

        2. Show that

        αk =

        (

        1

        π

        R π

        −π

        u(x) cos(kx) dx if k ̸= 0

        1

        R π

        −π

        u(x) dx if k = 0

        βk =

        1

        π

        Z π

        π

        u(x) sin(kx) dx.

        2

        MA2552 Introduction to Computing (DLI) 2023/24

        3. Using question 1 and 2, write a function that given a function handle u and an integer

        m, outputs the array [α0, α1 . . . , αm, β1, . . . , βm].

        4. Write a function that given an array [α0, α1 . . . , αm, β1, . . . , βm], outputs (in the form

        of an array) the truncated series

        um(x) := Xm

        k=0

        αk cos(kx) +Xm

        k=1

        βk sin(kx), (2)

        where x is a linspace array on the interval [−π, π].

        5. Using the function from question 3, compute the truncated series um(x) of the following

        functions:

        • u(x) = sin3

        (x)

        • u(x) = |x|

        • u(x) = (

        x + π, for x ∈ [−π, 0]

        x − π, for x ∈ [0, π]

        ,

        and using question 4, plot u(x) and um(x) for different values of m.

        6. Carry out a study of the error between u(x) and um(x) for ∥u(x)−um(x)∥p with p = 2

        and then with p = ∞. What do you observe?

        Part 2: Solving the O.D.E

        Any given periodic function u(x) can be well approximated by its truncate series expansion (2) if m is large enough. Thus, to solve the ordinary differential equation (1)

        one can approximate u(x) by um(x):

        u(x) ≈

        Xm

        k=0

        αk cos(kx) +Xm

        k=1

        βk sin(kx),

        Since um(x) is completely determined by its coefficients [α0, α1 . . . , αm, β1, . . . , βm],

        to solve (1) numerically, one could build a system of equations for determining these

        coefficients.

        7. Explain why under the above approximation, the boundary conditions of (1) are automatically satisfied.

        8. We have that

        dum(x)

        dx =

        Xm

        k=0

        γk cos(kx) +Xm

        k=1

        ηk sin(kx)

        Write a function that takes as input the integer m, and outputs a square matrix D that

        maps the coefficients [α0, . . . , αm, β1, . . . , βm] to the coefficients [γ0, . . . , γm, η1, . . . , ηm].

        3

        MA2552 Introduction to Computing (DLI) 2023/24

        9. Write a function that given a function handler f and the constants ak, solves the

        O.D.E. (1). Note that some systems might have an infinite number of solutions. In

        that case your function should be able identify such cases.

        10. u(x) = cos(sin(x)) is the exact solution for f(x) = sin(x) sin(sin(x))−cos(sin(x)) (cos2

        (x) + 1),

        with a2 = 1, a0 = −1 and ak = 0 otherwise. Plot the p = 2 error between your numerical solution and u(x) for m = 1, 2, . . .. Use a log-scale for the y-axis. At what rate

        does your numerical solution converge to the exact solution?

        11. Show your numerical solution for different f(x) and different ak of your choice.

        請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

         

        掃一掃在手機打開當前頁
      1. 上一篇:INT3095代做、代寫Artificial Intelligence語言編程
      2. 下一篇:代寫MGMT20005、代做Decision Analysis程序
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 短信驗證碼 酒店vi設計 投資移民

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        国产亚洲精品国看不卡| 日韩精品视频观看| 四虎亚洲精品高清在线观看| 久久99久久精品视频| 国产亚洲精品岁国产微拍精品| 国产va免费精品| 精品无码黑人又粗又大又长| 亚洲欧洲中文日韩av乱码| 国产精品扒开做爽爽爽的视频| 欧美精品久久久久久精品爆乳| 久久福利资源国产精品999| 精品久久久久久久久午夜福利| 久久久国产精品亚洲一区| 日韩精品真人荷官无码| 久久精品国产精品亚洲色婷婷 | 国产线视频精品免费观看视频| 亚洲AV成人精品日韩一区18p| 日本一区二区三区精品国产 | 国产成人久久精品激情| 亚洲色精品aⅴ一区区三区| 999精品视频这里只有精品| 中文字幕在线视频精品| 久久夜色精品国产亚洲av| 久久久久国产精品麻豆AR影院 | 精品国产综合区久久久久久| 国产精品99爱免费视频| japanese乱人伦精品| 国产精品无码无卡无需播放器| 国产精品狼人久久久久影院| 国产精品午夜久久| 国产精品亚洲综合一区| 久久久久一级精品亚洲国产成人综合AV区 | 午夜精品久久影院蜜桃| 大桥未久在线精品视频在线| 亚洲精品美女久久久久99小说| 亚洲精品国产自在久久| 国产区精品高清在线观看 | 精品国产乱码久久久久久1区2区| 91精品国产高清久久久久久国产嫩草| 91午夜精品亚洲一区二区三区 | 精品人妻人人做人人爽夜夜爽|