合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代做ECN6540、代寫Java,c++編程語言

        時間:2024-01-25  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



        ECN6540  ECN6540 1

        Data Provided:

        Mathematical, Statistical and Financial Tables for the Social Sciences (Kmietowicz
        and Yannoulis).


        DEPARTMENT OF ECONOMICS Autumn Semester 2022/23

        ECN6540 Econometric Methods

        Duration: 2? Hours

        Maximum 1500 words excluding equations


        The answers to the questions must be type-written. The preference is that
        symbols and equations should be inserted into the document using the
        equation editor in Word. Alternatively, they can be scanned and inserted as an
        image (providing it is clear and readable).


        There are two questions, firstly on microeconometrics and secondly on
        macroeconometrics. ANSWER ALL QUESTIONS. The marks shown within each
        question indicate the weighting given to component sections. Any calculations
        must show all workings otherwise full marks will not be awarded.

        ECN654540 2
        MICROECONOMETRICS

        1. The non-mortgage debt behaviour of individuals is modelled using UK
        cross sectional data for 2017 from Understanding Society based upon
        11,**0 employees. The table below describes the variables in the data.


        Variable Definitions
        -----------------------------------------------------------------------------------------------------
        debtor = 1 if has any non-mortgage debt, 0 otherwise
        debt_inc = debt to income ratio (outstanding debt ? annual income)
        work_fin = 1 if employed in financial sector, 0 otherwise
        lincome = natural logarithm of income last month
        ghealth = 1 if currently in good or excellent health, 0 otherwise
        sex = 1 if male, 0=female
        degree = 1 if university degree, 0 = below degree level education
        lsavinv_inc = natural logarithm of saving & investment annual income
        age = age of individual in years
        agesq = age squared
        -----------------------------------------------------------------------------------------------------
        a. The following Stata output shows an analysis of modelling the probability that
        an individual holds non-mortgage debt using a Logit regression.

        logit debtor ib(0).work_fin##c.lincome ghealth sex degree age lsavinv_inc

        Logistic regression Number of obs = 11,**0
        LR chi2(8) = 546.50
        Prob > chi2 = 0.0000
        Log likelihood = -7067.5606 Pseudo R2 = 0.0372

        ----------------------------------------------------------------------------------
        debtor | Coefficient Std. err. z P>|z| [95% conf. interval]
        -------------------+--------------------------------------------------------------
        1.work_fin | 5.43774 1.271821 4.28 0.000 2.945017 7.930462
        lincome | .4584589 .0384631 11.92 0.000 .3830726 .5****51
        |
        work_fin#c.lincome |
        1 | -.6710698 .1587**2 -4.23 0.000 -.9821792 -.****604
        |
        ghealth | -.0796141 .0413548 -1.93 0.054 -.160668 .0014398
        sex | -.0084802 .0433091 -0.20 0.845 -.0933645 .0764041
        degree | .0795525 .0462392 1.72 0.085 -.0110748 .1701797
        age | -.03164** .0020753 -15.25 0.000 -.0357106 -.0275757
        lsavinv_inc | -.081**22 .0085226 -9.61 0.000 -.0986062 -.0651983
        _cons | -2.638081 .2870575 -9.19 0.000 -3.200703 -2.075458
        ----------------------------------------------------------------------------------

        ib(0).work_fin##c.lincome is an interaction effect between a binary
        and continuous variable. Summary statistics on variables used in the analysis
        are provided below.

        sum ib(0).work_fin##c.lincome ghealth sex degree age lsavinv_inc

        Variable | Obs Mean Std. dev. Min Max
        -------------+---------------------------------------------------------
        1.work_fin | 11,767 .0398572 .1956** 0 11
        lincome | 11,767 7.650333 .6965933 .0**777 9.8**781

        work_fin#|
        c.lincome 1 | 11,767 .3197615 1.574852 0 9.72120
        ECN6540
        ECN6540 3
        ghealth | 11,767 .5457636 .4979224 0 1
        sex | 11,767 .4812612 .49967 0 1
        degree | 11,767 .3192827 .4662186 0 1
        age | 11,767 44.43885 10.39257 18 65
        lsavinv_inc | 11,767 1.85**15 2.600682 0 11.51294
        -------------+---------------------------------------------------------

        i) What do the coefficients of work_fin, lincome and the interaction
        term imply? Explain whether the estimates can be interpreted.
        ii) Showing your calculations in full, find the marginal effects evaluated
        at the mean from the above output.
        iii) Provide an economic interpretation of the marginal effects found in
        (a(ii)).
        iv) Given the pseudo R-squared what is the value of the constrained
        log likelihood function? Show your calculation.

        [10 marks]

        [25 marks]

        [10 marks]

        [5 marks]
        b. There is also information on the amount of debt held as a proportion of
        income. This outcome is modelled using the Heckman sample selection
        estimator. The Stata output is shown below.

        heckman debt_inc age agesq sex degree lsavinv_inc,
        select(debtor = ib(0).work_fin##c.lincome ghealth sex degree age lsavinv_inc)

        Heckman selection model Number of obs = 11,**0
        Wald chi2(5) = 249.22
        Log likelihood = -13437.59 Prob > chi2 = 0.0000
        ------------------------------------------------------------------------------------
        | Coefficient Std. err. z P>|z| [95% conf. interval]
        -----------------------+------------------------------------------------------------
        debt_inc |
        age | -.1341**4 .0629505 -2.13 0.033 -.2575282 -.0107667
        agesq | .0003505 .0001265 2.77 0.006 .0001026 .0005985
        sex | .1517503 .0607726 2.50 0.013 .0**6382 .2708623
        degree | .157981 .0661602 2.39 0.017 .0283095 .2876525
        lsavinv_inc | .1130368 .0124696 9.06 0.000 .0885968 .137**67
        _cons | 9.727016 .2615992 37.18 0.000 9.214291 10.23974
        -----------------------+------------------------------------------------------------
        debtor |
        1.work_fin | 1.130109 .3719515 3.04 0.002 .4010974 1.85912
        lincome | .2965059 .011**74 26.18 0.000 .2743045 .3187072
        |
        work_fin#c.lincome |
        1 | -.1360006 .0461592 -2.95 0.003 -.226**09 -.0455303
        |
        ghealth | -.0106065 .0106393 -1.00 0.319 -.0314592 .0102462
        sex | -.0488**4 .0236997 -2.06 0.039 -.095**4 -.0024229
        degree | -.0369117 .0256652 -1.44 0.150 -.0872146 .01**2
        age | -.016944 .0011782 -14.38 0.000 -.01925** -.0146349
        lsavinv_inc | -.0468348 .00**518 -9.86 0.000 -.0561482 -.**214
        _cons | -1.828795 .0961843 -19.01 0.000 -2.01**12 -1.640277
        -------------------+----------------------------------------------------------------
        lambda | -2.579767 .0**69 -2.656537 -2.502997
        --------------------------------------------------------------------------------

        i) Interpret the estimates in the outcome equation.
        ii) In the context of the above Stata output what does the estimate of
        the inverse Mills ratio (lambda) suggest? What does lambda
        provide an estimate of in terms of the theory?
        [5 marks]


        [15 marks]
        ECN6540
        ECN6540 4



        c.
        iii) What assumption has been made about the covariates
        work_fin, lincome and ghealth in the treatment equation?
        What are the implications if these assumptions are not met? Are
        they individually statistically significant? If these variables are also
        included in the outcome equation explain whether the model is
        identified or not.

        In the context of the above application the following figure shows the
        distribution of debt as a proportion of annual income.

        Describe a situation in which a Tobit specification would be the preferred
        modelling choice rather than a sample selection approach. What
        assumptions would the Tobit modelling approach have to make with
        regard to the   treatment   and   outcome   equations?


        ECN6540
        ECN6540 5
        MACROECONOMETRICS


        2. a.

        The following Stata output is based upon modelling aggregate
        savings as a function of Gross Domestic Product (GDP), both
        measured in constant prices, over time () using data for the U.S.
        over the period 1960 to 2020. The savings function is a double
        logarithmic specification as follows:
        log = 0 + 1log +
        Where log is the natural logarithm of savings and log is the
        natural logarithm of GDP. The Stata output also shows the results
        of ADF tests for savings and GDP. Note that in the output L
        denotes a lag and D a difference.


        regress logS logY

        Source | SS df MS Number of obs = 61
        -------------+------------------------------ F( 1, 59) = 180.39
        Model | 29.3601715 1 29.3601715 Prob > F = 0.0000
        Residual | 9.6029125 59 .**761229 R-squared = 0.7535
        -------------+------------------------------ Adj R-squared = 0.7494
        Total | 38.963084 60 .649384**4 Root MSE = .40344
        ------------------------------------------------------------------------------
        logS | Coef. Std. Err. t P>|t| [95% Conf. Interval]
        -------------+----------------------------------------------------------------
        logY | 1.16096 .0864398 13.43 0.000 .9879948 1.333926
        _cons | -4.00**35 .6**211 -5.84 0.000 -5.38026 -2.63441
        ------------------------------------------------------------------------------

        Durbin-Watson d-statistic( 2, 61) = .7252386
        predict e, resid

        i) Interpret the OLS results. Explain whether the analysis is likely
        to be spurious?
        ii) What do the results of the ADF tests on savings and GDP imply
        at the 5 percent level? Show the test statistic used, the null
        hypothesis tested and the appropriate critical value.
        iii) Explain whether savings and GDP are cointegrated at the 5
        percent level. Explicitly state the null hypothesis, show
        algebraically the estimated test equation based upon the
        output, and provide the appropriate critical value.

        dfuller logS, lag(4) regress

        Augmented Dickey-Fuller test for unit root Number of obs = 56
        ------------------------------------------------------------------------------
        D.logS | Coef. Std. Err. t P>|t| [95% Conf. Interval]
        -------------+----------------------------------------------------------------
        logS |
        L1. | -.129875 .0534553 -2.43 0.019 -.2372431 -.0225069
        LD. | .****003 .099153 2.35 0.022 .0343457 .4**6549
        L2D. | .193**** .0807975 2.40 0.020 .0316167 .3561897
        L3D. | -.0834007 .0858594 -0.97 0.336 -.2558545 .08**53
        L4D. | -.2258198 .0784568 -2.88 0.006 -.3834049 -.0682348
        cons | .7246592 .2840536 2.55 0.014 .1541207 1.295198
        ------------------------------------------------------------------------------

        ECN6540
        ECN654**
        dfuller logY, lag(4) regress

        Augmented Dickey-Fuller test for unit root Number of obs = 56
        ------------------------------------------------------------------------------
        D.logY | Coef. Std. Err. t P>|t| [95% Conf. Interval]
        -------------+----------------------------------------------------------------
        logY |
        L1. | -.0175**9 .0092468 -1.** 0.063 -.0361467 .000999
        LD. | .4530274 .12**37**.51 0.001 .1938**6 .7122072
        L2D. | -.0699222 .1306402 -0.54 0.595 -.3****08 .192**65
        L3D. | -.1351664 .1297451 -1.04 0.303 -.3957672 .1254344
        L4D. | -.17749** .1177561 -1.51 0.138 -.4140149 .05**255
        _cons | .1720878 .076104 2.26 0.028 .0192285 .**49**1
        ------------------------------------------------------------------------------

        dfuller e, lag(4)

        Test Statistic
        ----------------------------
        Z(t) -4.042
        ----------------------------

        b. Explain why the Johansen approach to cointegration may be
        preferable to the Engle-Granger two step approach, in each of the
        following two scenarios:
        i) In the above example (part a) when there are variables in the
        model, i.e. = 2?
        ii) When ?3. In this scenario what is the maximum number of
        cointegrating vectors?

        c. A researcher has modelled the relationship between personal
        consumption expenditure and the money supply as measured by
        M2 based upon a double logarithmic specification as follows:
        log() = 0 + 1log(2) +
        They then build a dynamic forecast of consumption. Two
        alternative models are estimated over the period 1969q1 through
        to 2008q4: Model 1 an ARIMA(1,1,2) and Model 2 an
        ARIMA(1,1,1). Then the researcher forecasts out of sample
        through to 2010q3. The results are shown below along with
        diagnostic statistics.

        i) Based upon the output below for the ARIMA(1,1,1) model draw
        both the ACF and PACF for the AR and MA components.
        ii) Explain whether the models are stationary and invertible, along
        with any potential implications.
        iii) Explain in detail which of the above two models is preferred
        and why. Outline any further analysis you may want to
        undertake giving your reasons.
        請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

        掃一掃在手機打開當(dāng)前頁
      1. 上一篇:天然鉆石和人工培育鉆石的區(qū)別:看看十個主要的區(qū)別方法
      2. 下一篇:代投代發(fā)EI 檢索 EI會議
      3. 無相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發(fā)動機性能
        挖掘機濾芯提升發(fā)動機性能
        戴納斯帝壁掛爐全國售后服務(wù)電話24小時官網(wǎng)400(全國服務(wù)熱線)
        戴納斯帝壁掛爐全國售后服務(wù)電話24小時官網(wǎng)
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話24小時服務(wù)熱線
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話2
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時客服熱線
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 短信驗證碼 酒店vi設(shè)計

        亚洲综合国产精品第一页| 国产午夜精品福利| 久久一区二区精品综合| 久久国产精品视频| 一级A毛片免费观看久久精品| 日韩一区精品视频一区二区| 精品乱码久久久久久中文字幕| 亚洲精品国产国语| 精品国产sm捆绑最大网免费站| 99re66热这里只有精品17| 国产成人精品午夜福利| 亚洲精品色午夜无码专区日韩| 久久99精品久久久久久齐齐| 亚洲国产精品国产自在在线| 日韩精品一区二区三区中文3d| 日韩av无码中文无码电影| 国产精品国产三级国产普通话a| 精品国产系列在线观看| 久久精品青草社区| 欧美日韩精品SUV| 精品无人区麻豆乱码1区2区新区 | 亚洲精品色在线网站| 青娱分类视频精品免费2| 精品国产一区AV天美传媒| 揄拍自拍日韩精品| 亚洲精品中文字幕麻豆| 3d动漫精品啪啪一区二区中 | jizz国产精品jizz中国| 2021国产精品一区二区在线| 亚洲精品国产专区91在线| 久久久久久精品成人免费图片| 91亚洲精品视频| 精品女同一区二区三区免费站 | 国产精品免费小视频| 国产精品久久久久国产精品三级 | 日韩精品国产自在久久现线拍 | 久热精品视频在线观看99小说| 久久免费精品视频| 亚洲国产精品高清久久久| 久久国产乱子伦精品免| 人人妻人人澡人人爽人人精品97|