合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代寫(xiě)3D printer materials estimation編程

        時(shí)間:2024-02-21  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        Project 1: 3D printer materials estimation
        Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
        definitions on the code.R file and write your report using report.Rmd. You must upload the following three
        files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
        in the README.md file.
        The main text in your report should be a coherent presentation of theory and discussion of methods and
        results, showing code for code chunks that perform computations and analysis but not code for code chunks
        that generate functions, figures, or tables.
        Use the echo=TRUE and echo=FALSE to control what code is visible.
        The styler package addin is useful for restyling code for better and consistent readability. It works for both
        .R and .Rmd files.
        The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
        attached in Learn as PDF files.
        Submission should be done through Gradescope.
        1 The data
        A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
        objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
        much material will be required to print the object.
        The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
        • Index: an observation index
        • Date: printing dates
        • Material: the printing material, identified by its colour
        • CAD_Weight: the object weight (in grams) that the CAD software calculated
        • Actual_Weight: the actual weight of the object (in grams) after printing
        Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
        and Material.
        2 Classical estimation
        Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
        Actual_Weight. We denote the CAD_weight for observation i by xi
        , and the corresponding Actual_Weight
        by yi
        . The two models are defined by
        • Model A: yi ∼ Normal[β1 + β2xi
        , exp(β3 + β4xi)]
        • Model B: yi ∼ Normal[β1 + β2xi
        , exp(β3) + exp(β4)x
        2
        i
        )]
        The printer operator reasons that random fluctuations in the material properties (such as the density) and
        room temperature should lead to a relative error instead of an additive error, leading them to model B as an
        approximation of that. The basic physics assumption is that the error in the CAD software calculation of
        the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
        convenient, but has no such motivation in physics.
        1
        Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
        containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
        specified model.
        Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
        to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
        optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
        function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
        and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
        best set of parameters found and the estimate of the Hessian at the solution found.
        First, use filament1_estimate() to estimate models A and B using the filament1 data:
        • fit_A = filament1_estimate(filament1, “A”)
        • fit_B = filament1_estimate(filament1, “B”)
        Use the approximation method for large n and the outputs from filament1_estimate() to construct an
        approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
        using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
        Comment on the differences to interpret the model estimation results.
        3 Bayesian estimation
        Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
        observation i:
        yi ∼ Normal[β1 + β2xi
        , β3 + β4x
        2
        i
        )].
        To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
        introduced, and the printer operator assigns independent prior distributions as follows:
        θ1 ∼ Normal(0, γ1),
        θ2 ∼ Normal(1, γ2),
        θ3 ∼ LogExp(γ3),
        θ4 ∼ LogExp(γ4),
        where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
        a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
        3.1 Prior density
        With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
        document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
        θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
        of the joint prior density p(θ) for the four θi parameters.
        3.2 Observation likelihood
        With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
        evaluates the observation log-likelihood p(y|θ) for the model defined above.
        3.3 Posterior density
        Define and document a function log_posterior_density with arguments theta, x, y, and params, which
        evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
        2
        3.4 Posterior mode
        Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
        with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
        evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
        return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
        the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
        to do maximisation instead of minimisation.
        3.5 Gaussian approximation
        Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
        mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
        θ. Use start values θ = 0.
        3.6 Importance sampling function
        The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
        the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
        was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
        distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
        densities.
        Define and document a function do_importance taking arguments N (the number of samples to generate),
        mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
        parameters that are needed by the function code.
        The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
        containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
        the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
        information.
        3.7 Importance sampling
        Use your defined functions to compute an importance sample of size N = 10000. With the help of
        the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
        pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
        Construct **% credible intervals for each of the four model parameters based on the importance sample.
        In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
        wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
        probability), generating a **row, 2-column data.frame to help structure the code.
        Discuss the results both from the sampling method point of view and the 3D printer application point of
        view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
        and plotting the importance log-weights to explain how they depend on the sampled β-values).
        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

        掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
      1. 上一篇:代寫(xiě)Dragonfly Network Diagram Analysis
      2. 下一篇:代寫(xiě)UDP Client-Server application java程序
      3. 無(wú)相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        出評(píng) 開(kāi)團(tuán)工具
        出評(píng) 開(kāi)團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話(huà)24小時(shí)官網(wǎng)400(全國(guó)服務(wù)熱線(xiàn))
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話(huà)24小時(shí)官網(wǎng)
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話(huà)24小時(shí)服務(wù)熱線(xiàn)
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話(huà)2
        美的熱水器售后服務(wù)技術(shù)咨詢(xún)電話(huà)全國(guó)24小時(shí)客服熱線(xiàn)
        美的熱水器售后服務(wù)技術(shù)咨詢(xún)電話(huà)全國(guó)24小時(shí)
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線(xiàn)
        合肥機(jī)場(chǎng)巴士4號(hào)線(xiàn)
        合肥機(jī)場(chǎng)巴士3號(hào)線(xiàn)
        合肥機(jī)場(chǎng)巴士3號(hào)線(xiàn)
      4. 短信驗(yàn)證碼 酒店vi設(shè)計(jì)

        国产日韩精品在线| 国产精品无码一区二区三区电影| 亚洲国产成人久久精品大牛影视| 久久ww精品w免费人成| 国产精品免费福利久久| 97精品国产91久久久久久| 国产福利电影一区二区三区久久久久成人精品综合 | 国产精品三级在线观看无码| www.午夜精品| 国产亚洲日韩在线a不卡| 丰满日韩放荡少妇无码视频| 国产精品久久久久久久久久久搜索| 最新日韩精品中文字幕| 99RE6热在线精品视频观看| 精品国产一二三产品价格| 亚洲精品午夜视频| 91久久精品国产91久久性色也| 99热热久久这里只有精品166 | 影院成人区精品一区二区婷婷丽春院影视 | 精品国产一二三区在线影院| 精品无码AV一区二区三区不卡| 国产精品免费看久久久| 日本精品一区二区三区在线观看| 亚洲精品少妇30p| 国产乱人伦偷精品视频免下载| 熟女人妻少妇精品视频| 99国产精品久久久久久久成人热| 香蕉精品视频在线观看| 国自产精品手机在线观看视| 成人午夜视频精品一区| 久久久久亚洲精品男人的天堂| 久久精品国产99久久丝袜| 中文字幕在线不卡精品视频99| 99久久国语露脸精品国产| 亚洲精品午夜无码电影网| 久久精品9988| 亚洲国产成人精品不卡青青草原| 99热这里只有精品6免费| 91嫩草亚洲精品| 国产精品久久久久久久app| 亚洲av午夜国产精品无码中文字|