合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        AERO20542代做、代寫Python/Java編程

        時間:2024-03-07  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        MECH20042/AERO20542 Numerical Methods and Computing
        Laboratory exercise 1: Direct methods for the solution of
        tridiagonal systems of linear equations
        Solution of systems of linear equations is one of the most frequently encountered problems in
        numerical modelling and simulation. Efficient numerical methods, both in terms of the execution time
        and memory storage are essential to complete this task. Sparse systems of linear equations arise in
        many applications, such as finite element or finite volume solution of differential equations. Sparse
        linear systems have coefficient matrices that are sparse, i.e., a large proportion of the elements are
        equal to zero. Banded matrices are a special class of sparse matrices in which the non-zero coefficients
        are concentrated about the main diagonal.
        Storing sparse matrices in computer memory as two-dimensional arrays is inefficient, as many zero
        elements are kept needlessly in computer memory. Banded matrices can be stored by their diagonals,
        where each diagonal is stored as a one-dimensional array (a vector). With this setup a tridiagonal
        matrix 𝑇 of size 𝑛 × 𝑛

        can be stored using three vectors as follows:
        𝐴 = [𝑎11 𝑎22 ⋯ 𝑎𝑛𝑛]
        𝑇 ∈ 𝑅
        𝑛
        ,
        w**; = [𝑎21 𝑎** ⋯ 𝑎𝑛,𝑛−1]
        𝑇 ∈ 𝑅
        𝑛−1
        ,
        𝐶 = [𝑎12 𝑎23 ⋯ 𝑎𝑛−1,𝑛]
        𝑇 ∈ 𝑅
        𝑛−1
        .
        The Gaussian elimination technique applied to a tridiagonal system 𝑇𝒙 = 𝒇 is particularly simple,
        because only the non-zero elements in the sub-diagonal held in vector w**; need to be eliminated. This
        algorithm, known as the Thomas algorithm, proceeds as follows:
        FORWARD ELIMINATION BACKSUBSTITUTION
        𝑎𝑖𝑖 = 𝑎𝑖𝑖 −
        𝑎𝑖,𝑖−1
        𝑎𝑖−1,𝑖−1
        𝑎𝑖−1,𝑖 w**9;𝑛 =
        𝑓𝑛
        𝑎𝑛𝑛
        𝑓𝑖 = 𝑓𝑖 −
        𝑎𝑖,𝑖−1
        𝑎𝑖−1,𝑖−1
        𝑓𝑖−1 w**9;𝑖 =
        1
        𝑎𝑖𝑖
        (𝑓𝑖 − 𝑎𝑖,𝑖+1 w**9;𝑖+1)
        𝑖 = 2, … , 𝑛 𝑖 = 𝑛 − 1, … ,1
        TASK 1. Calculate the number of arithmetic operations that are required to solve a tridiagonal system
        𝑇𝒙 = 𝒇 of size 𝑛 using the Thomas algorithm. Based on this result, determine the asymptotic
        complexity of the Thomas algorithm, and compare it to the asymptotic complexity of the standard
        Gaussian elimination.
        TASK 2. Rewrite the Thomas algorithm in terms of the arrays 𝐴,w**;, and 𝐶 introduced to store the matrix
        𝑇 efficiently.
        TASK 3. Implement the Thomas algorithm from TASK 2 as a Python function. The input parameters to
        the function should be the coefficient matrix 𝑇 (stored as three arrays 𝐴,w**;, and 𝐶) and the right-hand
        side vector 𝒇. The output should be the solution vector 𝒙. The coefficient matrix and the right-hand
        side should be defined in the main script and passed to the function that solves the system.
        TASK 4. Test your code by solving the linear system of size 𝑛 = 10 with the values 𝐴 = 2, and w**; = 𝐶 =
        −1. Set the right-hand side to 𝒇 = 𝟏. To verify the correctness of your code, compare the solution
        vector obtained from the Thomas algorithm to that obtained by applying the direct solver
        numpy.linalg.solve(). For the latter, the coefficient matrix should be assembled.
        TASK 5. Solve five linear systems 𝑇𝒙 = 𝒇 with 𝐴 = 2, w**; = 𝐶 = −1 and 𝒇 = 𝟏 varying the problem size
        𝑛 between 106
        and 108
        . Record the execution times in seconds for each case. To accomplish this task,
        explore the Python function timer() from the package timeit (refer to the code for matrix
        multiplication covered in lectures). Plot a graph where the obtained execution times are represented
        as the function of the problem size 𝑛. What are your conclusions about the cost of the Thomas
        請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp

        掃一掃在手機打開當前頁
      1. 上一篇:PROG2007代寫、Python/c++程序語言代做
      2. 下一篇:代寫CMSC 323、代做Java/Python編程
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 NBA直播 幣安下載

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        人成精品视频三区二区一区| 国内精品久久人妻无码不卡| 亚洲AV无码成人精品区在线观看 | 欧美日韩视费观看视频| 国产精品熟女高潮视频| 久久夜色撩人精品国产| 老司机免费午夜精品视频| 依依成人精品视频在线观看| 超碰97久久国产精品牛牛| 宅男宅女精品国产av天堂| 日韩高清中文字幕| 国产精品天干天干在线综合 | 国产精品无码久久av| 在线精品国产成人综合| 国产精品视频一区二区三区经| 亚洲精品日韩专区silk| 99久久免费精品视频| 99热这里只/这里有精品| 亚洲av日韩av天堂影片精品| 国内精品在线视频| 亚洲中文字幕久久精品无码APP| 久久青青草原精品国产不卡| 国产三级精品三级| 精品无码综合一区| 久久99精品国产99久久6| 精品久久久久一区二区三区| 国产乱人伦偷精品视频免观看 | 久久精品中文字幕第一页| 久久精品一区二区| 久久se精品一区精品二区| 亚洲线精品一区二区三区影音先锋| 久久久精品日本一区二区三区 | 久久国产精品只做精品| 久久国产乱子伦精品免| 特级精品毛片免费观看| 久9re热这里精品首页| 亚洲综合一区二区国产精品| 99精品国产高清自在线看超| 乱色精品无码一区二区国产盗| 91精品国产三级在线观看| 182tv精品视频在线播放|