合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        COCMP5329 代寫、代做 python 程序設(shè)計(jì)

        時(shí)間:2024-03-17  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        OCMP5**9 - Deep Learning
        Coding Assignment
         
        This is an individual assignment and should be completed independently.
         
        Due: End of day on Friday of Week 4
        1. Task description
        Based on the codes given in Tutorial: Multilayer Neural Network, you are required to accomplish a multi-class classification task on the provided dataset.
         
        In this assignment, you are expected to implement the modules specified in the marking table. 
         
        You must guarantee that the submitted codes are self-complete, and the newly implemented modules can be successfully run in common Python environment.
         
        You are allowed to use Deep Learning frameworks (e.g. PyTorch). You are encouraged not to use these deep learning frameworks if you want to challenge yourself for a deeper understanding. In this case, scientific computing packages, such as NumPy and SciPy, can be used to manually implement the auto-grad functions. 
         
        If you have any questions about the assignment, please contact the teaching team.
         
        The dataset can be downloaded from Canvas. There are 10 classes in this dataset. The dataset has been split into training set and test set.
         
        2. Instructions to hand in the assignment 
        2.1 Go to Canvas and upload the report. The report should include each member’s details (student ID and name). 
        2.2 The report must include a link of your code and data (e.g. a shared Google Cloud folder, so we can easily run it on Colab). Clearly provide instructions on how to run your code in the appendix of the report or include a readme.txt in your shared folder. 
        Don’t update the code/data any more after the submission. If the latest modified time of the shared folder is significantly late after the submission deadline, the whole submission will be taken as a late submission.
        2.3 The report must clearly show (i) details of your modules, (ii) the predicted results from your classifier on test examples, (iii) run-time, and (iv) hardware and software specifications of the computer that you used for performance evaluations. 
        2.4 There is no special format to follow for the report but please make it as clear as possible and similar to a research paper. 
        2.5 The use of ChatGPT or other AI tools is prohibited in the assignments. A plagiarism checker will be used.
         
        Late submission
        Suppose you hand in work after the deadline.
        If you have not been granted special consideration or arrangements:
        – A penalty of 5% of the maximum marks will be taken per day (or part) late. After 10 days, you will be awarded a mark of zero.
        – For example, if an assignment is worth 40% of the final mark and you are one hour late submitting, then the maximum marks possible would be 38%.
        – For example, if an assignment is worth 40% of the final mark and you are 28 hours late submitting, then the maximum marks possible marks would be 36%.
        – Warning: submission sites get very slow near deadlines.
        – Submit early; you can resubmit if there is time before the deadline. 
         
         
        3. Marking scheme
        Category    Criterion
        Report [50]    Introduction [5]
        - What’s the aim of the study?
        - Why is the study important?
             Methods [15]
         
        - Problem formulation and pre-processing (if any) [3]
        - The principle of different modules [4]
        - What is the design of your best model [4]
        - Implementation details and hyper-parameters [4]
             Experiments and results (with Figures or Tables) [20] 
         
        - Performance in terms of different evaluation metrics [5]
        - Extensive analysis, including hyperparameter analysis, ablation studies and comparison methods [5]
        - Meaningful discussion of the results [5]
        - Justification on your best model [5]
             Discussion and conclusion [5]
        - Meaningful conclusion and reflection
             Other [5]
        - At the discretion of the marker: for impressing the marker, excelling expectation, etc. Examples include fast code, using LATEX, etc.
        Modules [45]    More than one hidden layer [5]
             ReLU activation [5]
             Weight decay [5]
             Momentum SGD [5]
             Dropout [5]
             Softmax and cross-entropy loss [5]
             Mini-batch training [5]
             Batch normalisation [5]
             Other advanced operations (e.g., GELU, Adam) [5] 
        * Please make a highlight if you have one you think is advanced.  
        Code [5]    Code runs within a feasible time [5]
        Code Penalties [-]
             Well organised, commented and documented [5]
             Badly written code: [-20]
             Not including instructions on how to run your code: [-30]
             Late submission
        請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

        掃一掃在手機(jī)打開當(dāng)前頁
      1. 上一篇:菲律賓移民局的PWP多少錢(PWP申請流程)
      2. 下一篇:免簽入境泰國步驟(去泰國提早預(yù)定機(jī)票嗎)
      3. 無相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        出評 開團(tuán)工具
        出評 開團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場巴士4號線
        合肥機(jī)場巴士4號線
        合肥機(jī)場巴士3號線
        合肥機(jī)場巴士3號線
        合肥機(jī)場巴士2號線
        合肥機(jī)場巴士2號線
        合肥機(jī)場巴士1號線
        合肥機(jī)場巴士1號線
      4. 短信驗(yàn)證碼 酒店vi設(shè)計(jì) deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號-3 公安備 42010502001045

        国产精品扒开做爽爽爽的视频| 78成人精品电影在线播放 | 国产精品自在在线午夜| 亚洲精品国产精品国自产网站| 久久久久国产精品免费网站| 99热婷婷国产精品综合| 久久久WWW成人免费精品| 国产精品H片在线播放| 日韩三级一区二区| 亚洲欧洲日韩综合| 日韩精品在线免费观看| 国产偷国产偷亚洲高清日韩| 国产精品va无码二区| 国产精品自拍亚洲| 成人无码精品一区二区三区| 亚洲精品无码av中文字幕| 97久久久精品综合88久久| 国产人成精品香港三级古代| 国产精品久久久久久影院| 精品无码成人片一区二区98 | 538精品视频在线观看| 久久精品无码午夜福利理论片| 无码精品国产一区二区三区免费| 久久午夜精品视频| 一区二区三区国产精品| 亚洲日本精品一区二区| 亚洲人成亚洲精品| 1717国产精品久久| 69pao精品视频在线观看| 精品一久久香蕉国产二月| 国产精品大尺度尺度视频| 欧美精品大香伊蕉在人线| 高清国产精品久久| 国产嫩草影院精品免费网址| 亚洲人精品午夜射精日韩| 日韩午夜激情视频| 国产成人精品久久| 老司机精品视频在线观看| 亚洲精品国产精品乱码视色| 久久这里只有精品66| 99re6在线精品视频免费播放|