合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        CS 6347代做、MATLAB程序設計代寫

        時間:2024-04-30  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        Problem Set 4
        CS 63**
        Due: 4/25/2024 by 11:59pm
        Note: all answers should be accompanied by explanations for full credit. Late homeworks
        cannot be accepted. All submitted code MUST compile/run.
        Problem 1: Expectation Maximization for Colorings (40 pts)
        For this problem, we will use the same factorization as we have in past assignments. As on the
        previous assignment, the weights will now be considered parameters of the model that need to be
        learned from samples.
        Suppose that some of the vertices, L ⊆ V , are latent variables in the model. Given m samples
        of the observed variables in V \ L, what is the log-likelihood as a function of the weights? Perform
        MLE using the EM algorithm. Your solution should be written as a MATLAB function that takes
        as input an n × n matrix A corresponding to the adjacency matrix of a graph G, an n-dimensional
        binary vector L whose non-zero entries correspond to the latent variables, and samples which is an
        n × m k-ary matrix where samplesi,t corresponds to observed color for vertex i in the t
        th sample
        (you should discard any inputs related to the latent variables). The output should be the vector of
        weights w corresponding to the MLE parameters for each color from the EM algorithm. Note that
        you should use belief propagation to approximate the counting problem in the E-step.
        function w = colorem(A, L, samples)
        Problem 2: EM for Bayesian Networks (60pts)
        For this problem, you will use the house-votes-84.data data set provided with this problem set.
        Each row of the provided data file corresponds to a single observation of a voting record for a
        congressperson: the first entry is party affiliation and the remaining entries correspond to votes on
        different legislation with question marks denoting missing data.
        1. Using the first three features and the first 300 data observations only, fit a Bayesian network
        to this data using the EM algorithm for each of the eight possible complete DAGs over three
        variables.
        2. Do different runs of the EM algorithm produce different models?
        3. Evaluate your eight models, on the data that was not used for training, for the task of
        predicting party affiliation given the values of the other two features. Is the prediction highly

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp













         

        掃一掃在手機打開當前頁
      1. 上一篇:COMP1047代做、代寫Java/Python程序語言
      2. 下一篇:代寫ECS 116、代做SQL設計編程
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 NBA直播 幣安下載

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        九九在线观看精品视频6| 精品久久久久久无码中文野结衣 | jizz中国jizz欧洲/日韩在线| 精品无码综合一区二区三区| 精品久久久噜噜噜久久久| 久久夜色精品国产网站| 国产精品视频一区二区三区四 | 久久99精品久久水蜜桃| 国产乱码精品一品二品| 久久亚洲精品无码观看不卡| 视频精品一区二区三区| 日韩在线播放全免费| 一区二区日韩国产精品| 国产精品视频公开费视频| WWW国产精品内射熟女| 亚洲精品国产suv一区88| 97精品久久天干天天天按摩| 亚洲麻豆精品果冻传媒| 精品一区二区三区无码免费视频| 亚洲国产精品免费视频| 亚洲av永久无码精品漫画| 亚洲精品国产品国语在线| 国产系列高清精品第一页| 国产精品午夜免费观看网站| 凹凸国产熟女精品视频app | 精品亚洲国产成人| 91精品国产自产91精品| 人妻精品久久无码专区精东影业| 四虎国产精品永久免费网址| 久久99国产这里有精品视| 久久免费观看国产精品88av| 久久精品女人毛片国产| 久久国产精品老人性| 久久国产精品免费专区| 亚洲精品高清视频| 人人妻人人澡人人爽人人精品| 99热这就是里面只有精品| 精品日韩亚洲AV无码一区二区三区| 九九精品99久久久香蕉| 精品国产一二三产品价格| 国产91久久精品一区二区|