合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代做DATA7703、代寫Python程序語言

        時間:2024-08-16  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



        S2 - 2024 DATA7703 – Machine Learning for Data Scientists
        Assignment 1
        Decision Trees
        Due date: Friday Aug 16 3pm
        1. Training a Decision Tree
        - First complete Q1 using the scikit-learn (sklearn) library (40%)
        - Next complete Q1 without using any ML libraries, (ie. implement a decision tree
        algorithm from scratch) (30%)
        Write a program in Python to implement the ID3 decision tree algorithm. You should read in
        a tab delimited dataset, and output to the screen the relevant results in some readable format.
         Name your program decisiontreeassignment.py
         Basic math and file reading functions from libraries such as numpy or pandas etc. are
        allowed.
        There are two sample datasets available from the course blackboard page you can use
         tennis.txt - Predict whether or not your tennis partner will join you to play tennis
        based on weather.
         titanic2.txt - Predict the survival status of individual passengers on the Titanic based
        on their passenger class, age and gender.
        For the dataset files
         The first line of the file will contain the name of the fields.
         The last column is the classification attribute, and will always contain the
        values yes or no.
         All files are tab delimited.
        When you run your program, it should take a command-line parameter that contains the name
        of the file containing the training data. For example:
        python decisiontreeassignment.py tennis.txt
        And it should output the training set accuracy in some readable form. You do not need to
        print or display the resulting tree (unless you want to).
        2. Max Tree Depth (15%)
        - First complete Q2 using scikit-learn (sklearn) library (10%)
        - Next complete Q2 without using any ML libraries (5%)
        Add to your implementation so that you can limit the maximin tree depth. It should now take
        an additional command-line parameter that sets the maximum tree depth. For example:
        python decisiontreeassignment.py tennis.txt 5
        3. Test Set (15%)
        - First complete Q3 using scikit-learn (sklearn) library (10%)
        - Next complete Q3 without using any ML libraries (5%)
        Add to your implementation so that you can also pass a file containing data not in the training
        data. It should now output the training set accuracy as well as the testing set accuracy in some
        readable form.
        The command-line call should now have a third parameter containing the name of the file
        containing the testing data. For example:
        python decisiontreeassignment.py tennis_trainingset.txt 5 tennis_testset.txt
        You can create training and testing sets by (randomly) splitting the available data
        appropriately.
        Submission
        Assignments to be completed individually and submitted through blackboard.
        Due date
        Friday Aug 16 3pm.

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




         

        掃一掃在手機打開當(dāng)前頁
      1. 上一篇:代寫代做INF10025 Data Management and Analytic
      2. 下一篇:代做BSAN3212、代寫c/c++,Python程序語言
      3. 無相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發(fā)動機性能
        挖掘機濾芯提升發(fā)動機性能
        海信羅馬假日洗衣機亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設(shè)計 NBA直播 幣安下載

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號-3 公安備 42010502001045

        国产一区二区精品久久91| 无码精品一区二区三区| 手机看片在线精品观看| 国产69精品久久久久99| 日韩免费毛片视频| 日韩精品无码人成视频手机 | 亚洲youwu永久无码精品| 国产精品久久波多野结衣| 亚洲av产在线精品亚洲第一站| 精品少妇人妻av无码久久| 99re九精品视频在线视频| 麻豆亚洲AV永久无码精品久久| 久久久久亚洲精品影视| 亚洲国产精品嫩草影院在线观看 | 久久精品国产成人| 久久亚洲国产精品一区二区| 亚洲精品国产成人片| 亚洲午夜国产精品无码| 国产午夜精品免费一区二区三区| 国产自啪精品视频网站丝袜| 拍真实国产伦偷精品| 亚洲精品亚洲人成人网| 精品无人区麻豆乱码1区2区| 久久久精品免费国产四虎| 国产精品国产亚洲精品看不卡| 国语自产拍精品香蕉在线播放| 久久精品国产精品亚洲精品 | 日韩有码一区二区| 中文字幕日韩视频| 日韩免费一区二区三区在线| 日韩成av人片在线观看| 青青久久精品国产免费看| 亚洲精品亚洲人成在线观看下载| 精品人体无码一区二区三区| 国内精品久久久久国产盗摄 | 国产精品久久久久影院| 国产在线精品二区赵丽颖| 亚洲国产日韩在线观频| 日韩影院在线观看| 国产精品亚洲产品一区二区三区| 久久成人国产精品一区二区|