合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        COMP 627代寫、代做Python設計程序
        COMP 627代寫、代做Python設計程序

        時間:2024-08-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        COMP 627 – Assignment 1 
         
        Note: Refer to Eq. 2.11 in the textbook for weight update. Both weights, w1 and b, need to be adjusted. 
        According to Eq. 2.11, for input x1, error E = t-y and learning rate β: 
        w1_new=w1_old+ β E x1; 
        bnew= bold+ β E 
        COMP 627 Neural Networks and Applications 
        Assignment 1 
        Perceptron and Linear neuron: Manual training and real-life case 
        studies 
         
        Part 1: Perceptron 
        [08 marks] 
         
         
         Download Fish_data.csv file from LEARN page. Use this dataset to answer the two questions (i) and (ii) 
        below on Perceptron. The dataset consists of 3 columns. The first two columns are inputs (ring 
        diameter of scales of fish grown in sea water and fresh water, respectively). The third column is the 
        output which states whether the category of the fish is Canadian or Alaskan (the value is 0 for Canadian 
        and 1 for Alaskan). Perceptron model classifies fish into Canadian or Alaskan depending on these two 
        measures of ring diameter of scales. 
        (i) Extract the first AND last row of data and label these rows 1 and 2. Use an initial weight 
        vector of [w1= 102, w2= -28, b= 5.0] and learning rate β of 0.5 for training a perceptron 
        model manually as below: 
        Adjust the weights in example-by-example mode of learning using the two input vectors. 
        Present the input data in the order of rows 1 and 2 to the perceptron. After presentation 
        of each input vector and corresponding weight adjustment, show the resulting 
        classification boundary on the two data points as in Fig. 2.15 in the book. For each round 
        of weight adjustment, there will be a new classification boundary line. You can do the 
        plots on Excel, by hand, python or any other plotting software. Repeat this for 2 epochs 
        (i.e., pass the two input vectors twice through the perceptron). 
        (4 marks) 
         
         
        (ii) Write python code to create a perceptron model to use the whole dataset in fish.csv to 
        classify fish into Canadian or Alaskan depending on the two input measures of ring 
        diameter of scales. Use 200 epochs for accurate models. 
         
        Modify your python code to show the final classification boundary on the data. 
         
        Write the equation of this boundary line. 
        Compare with the classification boundary in the book. 
        (4 marks) 2 
        COMP 627 – Assignment 1 
         
        Note: For adjusting weights, follow the batch learning example for linear neuron on page 57 of the 
        textbook that follows Eq. 2.36. After each epoch, adjust the weights as follows: 
         
         w1_new=w1_old + β (E1 x1 + E2 x2)/2 
        bnew= bold + β (E1 + E2)/2 
        where E1 and E2 are the errors for the two inputs. 
         
         
         
        Part 2: Single Linear Neuron 
         
        [12 marks] 
        Download heat_influx_north_south.csv file from LEARN page. Use this dataset to develop a single 
        linear neuron model to answer the questions (i) to (v) below. This is the dataset that we learned about 
        in the text book and lectures where a linear neuron model had been trained to predict heat influx in 
        to a house from the north and south elevations of the house. Note that the dataset has been 
        normalised (between 0 and 1) to increase the accuracy of the models. When data (inputs and outputs) 
        have very different ranges, normalisation helps balance this issue. 
        (i) Use two rows of data (rows 1 and 2 (0.319, 0.929) and (0.302, 0.49)), respectively, to train 
        a linear neuron manually to predict heat influx into a home based on the north elevation 
        (angle of exposure to the sun) of the home (value in ‘North’ column is the input for the 
        single neuron where output is the value in ‘HeatFlux’ column). Use an initial weight vector 
        of [b (bias) = 2.1, w1= -0.2] and learning rate of 0.5. Bias input =1. You need to adjust 
        both weights, b and w1. 
        (3 marks) 
         
        a) Train the linear neuron manually in batch mode. Repeat this for 2 epochs. 
         
        Note: 
        Try to separate the dataset into two datasets based on the value in ‘Canadian_0_Alaskan_1’ column. 
        Example code is given below. 
        #create dataframe X1 with input columns of the rows with the value 0 in 'Canadian_0_Alaskan_1' column 
        X1 = df.loc[df["Canadian_0_Alaskan_1"] == 0].iloc[:, 0:2] 
         
         
        Plot the data of two datasets with different markers ‘o’ and ‘x’. 
        Plot the decision boundary line using the equation used in Laboratory Tutorial 2 – Part 2 (Please note 
        that there is a correction in the equation and the updated assignment is available on LEARN). 
        Final plot should be like this. 3 
        COMP 627 – Assignment 1 
         
        1 2 
        Note: To retrieve the mean squared error, you can use the following code 
         
        from sklearn.metrics import mean_squared_error 
        print(mean_squared_error(Y, predicted_y)) 
        b) After the training with the 2 epochs is over, use your final weights to test how the 
        neuron is now performing by passing the same two data points again into the neuron 
        and computing error for each input (E1 and E2). Compute Mean Square Error (MSE) 
        for the 2 inputs using the formula below. 
         
           
        2+   
        2
         
        MSE = 

         
        (ii) Write a python program to train a single linear neuron model using all data to predict heat 
        influx from north elevation (value in ‘North’ column is the input for the single neuron 
        where output is the value in ‘HeatFlux’ column) using all data. Train the model with 3000 
        epochs for high accuracy. 
         
        Extract the weights of the model and write the equation for the neuron function (linear 
        equation showing input-output relationship as in Eq. 2.44) and plot the neuron function 
        on data as in Figure 2.34 in the textbook. 
         
        Modify the code to retrieve the mean square error (MSE) and R
        2
         score for the trained 
        neuron model. 
        (3 marks) 
         
         
        (iii) Write a python program to train a linear neuron on the whole data set to predict heat 
        influx from north and south elevations (using the two inputs from the two columns 
        ‘South’ and ‘North’). Train the model with 3000 epochs for high accuracy. 
         
        Extract the weights of the model and write the equation for the network function. 
         
        Modify your program to find the Mean Square Error (MSE) and R
        2
         score of the model. 
         
        Compare the error difference between the previous one-input case (in part (ii)) and the 
        current two-input case. 
        (4 marks) 
         
        (iv) Modify the program to plot the data and the network function on the same plot (Refer to 
        the Laboratory Tutorial 4). Plot the network function on the data (3D plot of predicted 
        heat influx as a function plotted against north and south elevations.(1 marks) 
        Note: Neural Network develops a function (plane/surface) that goes through the data as closely as 
        possible. Here, we want to see how close this surface is to the data. Since we have 2 inputs, we need a 
        3-D plot to see this. We plot the network function against the two inputs. 
        Your final output should look like this: 4 
        COMP 627 – Assignment 1 
         
        Note: In the plot in part (iv) above, the network function was shown as a surface plotted against the 2 
        inputs. However, you can also calculate the NN predicted heat influx for those exact input values for north 
        and south elevations in the dataset (as opposed to showing the function) and then plot the predicted heat 
        influx and target heat influx on the same 3D plot against the 2 inputs. 
        Your final output should look like this: 
        (v) Plot the network predicted heat influx values and target heat influx values against the two 
        inputs (3D data plot). 
        (1 marks) 

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

        掃一掃在手機打開當前頁
      1. 上一篇:代做COMP5216、代寫Java設計編程
      2. 下一篇:代做QBUS3330、c++,Python編程設計代寫
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 NBA直播 幣安下載

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        在线精品日韩一区二区三区| 精品久久久久久中文字幕无碍 | 精品久久久久久久久中文字幕| 四虎精品免费永久免费视频| 亚洲日韩图片专区第1页| 国产精品亚洲一区二区无码| 国产精品无码久久四虎| 2021国内久久精品| 亚洲国产精品网站久久| 99re热这里只有精品视频| 久久国产精品老人性| 国产精品露脸国语对白| 久久成人国产精品二三区| 国色精品va在线观看免费视频| 中文国产成人精品久久下载| 精品久久久久久国产牛牛app| 国产精品成人观看视频| 国产精品久久久久久久午夜片| 亚洲精品国产精品国自产观看| 日韩亚洲综合精品国产| 精品一区二区三区中文| 午夜成人精品福利网站在线观看| 精品视频免费在线| heyzo加勒比高清国产精品| 免费精品国产自产拍在线观看| 精品一区二区三区视频| 污污网站国产精品白丝袜| 中日韩精品视频在线观看 | 精品久久久久久国产| 国精品午夜福利视频不卡| 精品国产日产一区二区三区| 国产麻豆精品一区二区三区v视界 国产麻豆一精品一AV一免费 | 一区二区三区久久精品| 日韩免费高清一级毛片在线| 日韩免费观看的一级毛片| 精品免费AV一区二区三区| 一级A毛片免费观看久久精品| 亚洲国产精品尤物yw在线| 精品久久久久中文字幕一区| 国产在线国偷精品免费看| 亚洲精品蜜桃久久久久久|