合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

        代寫AI6012程序、代做Java/c++編程
        代寫AI6012程序、代做Java/c++編程

        時間:2024-09-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        AI6012: Machine Learning Methodologies &
        Applications Assignment (25 points)
        Important notes: to ffnish this assignment, you are allowed to look up textbooks or
        search materials via Google for reference. NO plagiarism from classmates is allowed.
        The submission deadline is by 11:59 pm, Sept. 30, 2022. The ffle to be submitted
        is a single PDF (no source codes are required to be submitted). Multiple submission
        attempts are allowed, and the last one will be graded. A submission link is available
        under “Assignments” of the course website in NTULearn.
        Question 1 (10 marks): Consider a multi-class classiffcation problem of C classes.
        Based on the parametric forms of the conditional probabilities of each class introduced
        on the 39th Page (“Extension to Multiple Classes”) of the lecture notes of L4, derive
        the learning procedure of regularized logistic regression for multi-class classiffcation
        problems.
        Hint: deffne a loss function by borrowing an idea from binary classiffcation, and
        derive the gradient descent rules to update {w(c)}’s.
        Question 2 (5 marks): This is a hands-on exercise to use the SVC API of scikitlearn
        1
        to
         train a SVM with the linear kernel and the rbf kernel, respectively, on a binary
        classiffcation dataset. The details of instructions are described as follows.
        1. Download the a9a dataset from the LIBSVM Dataset page.
        This is a preprocessed dataset of the Adult dataset in the UCI Irvine Machine
        Learning Repository
        2
        , which consists of a training set (available here) and a test
        set (available here).
        Each ffle (the train set or the test set) is a text format in which each line represents
        a labeled data instance as follows:
        label index1:value1 index2:value2 ...
        where “label” denotes the class label of each instance, “indexT” denotes the
        T-th feature, and valueT denotes the value of the T-th feature of the instance.
        1Read Pages 63-64 of the lecture notes of L5 for reference
        2The details of the original Adult dataset can be found here.
        1This is a sparse format, where only non-zero feature values are stored for each
        instance. For example, suppose given a data set, where each data instance has 5
        dimensions (features). If a data instance whose label is “+1” and the input data
        instance vector is [2 0 2.5 4.3 0], then it is presented in a line as
        +1 1:2 3:2.5 4:4.3
        Hint: sciki-learn provides an API (“sklearn.datasets.load svmlight ffle”) to load
        such a sparse data format. Detailed information is available here.
        2. Regarding the linear kernel, show 3-fold cross-validation results in terms of classiffcation
         accuracy on the training set with different values of the parameter C in
        {0.01, 0.05, 0.1, 0.5, 1}, respectively, in the following table. Note that for all the
        other parameters, you can simply use the default values or specify the speciffc
        values you used in your submitted PDF ffle.
        Table 1: The 3-fold cross-validation results of varying values of C in SVC with linear
        kernel on the a9a training set (in accuracy).
        C = 0.01 C = 0.05 C = 0.1 C = 0.5 C = 1
        ? ? ? ? ?
        3. Regarding the rbf kernel, show 3-fold cross-validation results in terms of classiffcation
         accuracy on the training set with different values of the parameter gamma
        (i.e., σ
        2 on the lecture notes) in {0.01, 0.05, 0.1, 0.5, 1} and different values of
        the parameter C in {0.01, 0.05, 0.1, 0.5, 1}, respectively, in the following table.
        Note that for all the other parameters, you can simply use the default values or
        specify the speciffc values you used in your submitted PDF ffle.
        Table 2: The 3-fold cross-validation results of varying values of gamma and C in SVC
        with rbf kernel on the a9a training set (in accuracy).
        Hint: there are no speciffc APIs that integrates cross-validation into SVMs in
        sciki-learn. However, you can use some APIs under the category “Model Selection
        → Model validation” to implement it. Some examples can be found here.
        4. Based on the results shown in Tables **2, determine the best kernel and the best
        parameter setting. Use the best kernel with the best parameter setting to train a
        SVM using the whole training set and make predictions on test set to generate
        the following table:
        2Table 3: Test results of SVC on the a9a test set (in accuracy).
        Specify which kernel with what parameter setting
        Accuracy of SVMs ?
        Question 3 (5 marks): The optimization problem of linear soft-margin SVMs can
        be re-formulated as an instance of empirical structural risk minimization (refer to Page
        37 on L5 notes). Show how to reformulate it. Hint: search reference about the hinge
        loss.
        Question 4 (5 marks): Using the kernel trick introduced in L5 to extend the regularized
        linear regression model (L3) to solve nonlinear regression problems. Derive a
        closed-form solution (i.e., to derive a kernelized version of the closed-form solution on
        Page 50 of L3).


        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






         

        掃一掃在手機打開當前頁
      1. 上一篇:公認口碑最好的十個莆田微商,選擇這10個微商沒錯的
      2. 下一篇:COMPSCI 315代做、代寫Python/Java語言編程
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
        急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發(fā)動機性能
        挖掘機濾芯提升發(fā)動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 NBA直播 幣安下載

        關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        青娱乐精品视频在线观看| 久久国产精品一区| 2022国产精品不卡a| 日韩免费观看一区| 伊人久久精品无码麻豆一区| 久久久无码精品亚洲日韩蜜臀浪潮| 中日韩精品电影推荐网站| 日韩成人一区ftp在线播放| 日韩AV无码精品一二三区| 97精品一区二区视频在线观看 | 亚洲午夜久久久精品影院| 久久99精品久久久久久齐齐| 国产精品爱搞视频网站 | 国内精品久久久久久久coent | 久久99精品久久久久久久野外 | 一区二区三区四区精品视频| 久久99国产精品99久久| 亚洲精品白浆高清久久久久久| 亚洲精品成人无码中文毛片不卡| 亚洲色精品vr一区二区三区| 国产午夜精品一区二区三区嫩草| 色噜噜亚洲精品中文字幕| 久久91精品国产91久久户| 亚洲国产精品成人久久| 亚洲国产精品一区二区久久hs| 国产精品丝袜黑色高跟鞋| 精品999久久久久久中文字幕 | 日本精品久久久久久福利| 国产精品成人99一区无码| 国产精品公开免费视频| 国产精品100页| 日韩一卡2卡3卡4卡新区亚洲| 亚洲日韩欧洲乱码AV夜夜摸 | jazzjazz国产精品一区二区| 国内精品久久久久影视| 国产精品99久久99久久久动漫| 精品国产品香蕉在线观看| 国产精品爆乳奶水无码视频| 国产区香蕉精品系列在线观看不卡| 国产成人福利精品视频| 日韩写真集福利视频|