合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代做NEKN96、代寫c/c++,Java程序設計
        代做NEKN96、代寫c/c++,Java程序設計

        時間:2024-10-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        Homework Assignment 1
        NEKN96
        Guidelines
        1. Upload the HWA in .zip format to Canvas before the 2nd of October, 23:59, and only
        upload one HWA for each group. The .zip ffle should contain two parts:
        - A report in .pdf format, which will be corrected.
        - The code you used to create the output/estimates for the report. The code itself will
        not be graded/corrected and is only required to conffrm your work. The easiest is to add
        the whole project folder you used to the zip ffle.
        1 However, if you have used online tools,
        sharing a link to your work is also ffne.
        2
        2. The assignment should be done in groups of 3-4 people, pick groups at
        Canvas → People → Groups.
        3
        3. Double-check that each group member’s name and ID number are included in the .pdf ffle.
        4. To receive your ffnal grade on the course, a PASS is required on this HWA.
        - If a revision is required, the comments must be addressed, and an updated version should
        be mailed to ioannis.tzoumas@nek.lu.se. However, you are only guaranteed an additional
        evaluation of the assignment in connection to an examination period.
        4
        You will have a lot of ffexibility in how you want to solve each part of the assignment, and all things
        that are required to get a PASS are denoted in bullet points:

        Beware, some things require a lot of work, but you should still only include the ffnal table or ffgure
        and not all intermediary steps. If uncertain, add a sentence or two about how you reached your
        conclusions, but do not add supplementary material. Only include the tables/ffgures explicitly asked
        for in the bullet points.
        Good Luck!
        1Before uploading the code, copy-paste the project folder to a new directory and try to re-run it. Does it still work?
        2Make sure the repository/link is public/working before sharing it.
        3Rare exceptions can be made if required. 
        4Next is the retake on December 12th, 2024.
        1NEKN96
        Assignment
        Our goal is to put into practice the separation of population vs. sample using a linear regression
        model. This hands-on approach will allow us to generate a sample from a known Population Regression
        Function (PRF) and observe how breakages of the Gauss-Markov assumptions can affect our sample
        estimates.
        We will assume that the PRF is:
        Y = α + β1X1 + β2X2 + β3X3 + ε (1)
        However, to break the assumptions, we need to add:
        A0: Non-linearities
        A2: Heteroscedasticity
        A4: Endogeneity
        A7: Non-normality in a small sample
        A3 autocorrelation will be covered in HWA2, time-series modelling.
        Q1 - All Assumptions Fulfflled
        Let’s generate a ”correct” linear regression model. Generate a PRF with the parameters:
        α = 0.7, β1 = −1, β2 = 2, β3 = 0.5, ε ∼ N(0, 4), Xi
         iid∼ N(0, 1). (2)
        The example code is also available in Canvas
        Setup Parameters
        n = 30
        p = 3
        beta = [-1, 2, 0.5]
        alpha = 0.7
        Simulate X and Y, using normally distributed errors
        5
        np. random . seed ( seed =96)
        X = np. random . normal (loc=0, scale =1, size =(n, p))
        eps = np. random . normal (loc =0, scale =2, size =n)
        y = alpha + X @ beta + eps
        Run the correctly speciffed linear regression model
        result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
        result_OLS . summary ()
        ˆ Add a well-formatted summary table
        ˆ Interpret the estimate of βˆ
        2 and the R2
        .
        5
        Important: The np.random.seed() will ensure that we all get the same result. In other words, ensure that we are
        using the ”correct” seed and that we don’t generate anything else ”random” before this simulation.
        2NEKN96
        ˆ In a paragraph, discuss if the estimates are consistent with the population regression function.
        Why, why not?
        ˆ Re-run the model, increasing the sample size to n = 10000. In a paragraph, explain what happens
        to the parameter estimates, and why doesn’t R2 get closer and closer to 1 as n increases?
        Q2 - Endogeneity
        What if we (wrongly) assume that the PRF is:
        Y = α + β1X1 + β2X2 + ε (3)
        Use the same seed and setup as in Q1, and now estimate both the ”correct” and the ”wrong” model:
        result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
        result_OLS . summary ()
        result_OLS_endog = OLS ( endog =y, exog = add_constant (X[:,0:2 ])). fit ()
        result_OLS_endog . summary ()
        ˆ Shouldn’t this imply an omitted variable bias? Show mathematically why it won’t be a problem
        in this speciffc setup (see lecture notes ”Part 2 - Linear Regression”).
        Q3 - Non-Normality and Non-Linearity
        Let’s simulate a sample of n = 3000, keeping the same parameters, but adding kurtosis and skewness
        to the error terms:
        6
        n = 3000
        X = np. random . normal (loc=0, scale =1, size =(n, p))
        eps = np. random . normal (loc =0, scale =2, size =n)
        eps_KU = np. sign ( eps) * eps **2
        eps_SKandKU_tmp = np. where ( eps_KU > 0, eps_KU , eps_KU *2)
        eps_SKandKU = eps_SKandKU_tmp - np. mean ( eps_SKandKU_tmp )
        Now make the dependent variable into a non-linear relationship
        y_exp = np.exp( alpha + X @ beta + eps_SKandKU )
        ˆ Create three ffgures:
        1. Scatterplot of y exp against x 1
        2. Scatterplot of ln(y exp) against x 1
        3. plt.plot(eps SKandKU)
        The ffgure(s) should have a descriptive caption, and all labels and titles should be clear to the
        reader.
        Estimate two linear regression models:
        6The manual addition of kurtosis and skewness will make E [ε] ̸= 0, so we need to remove the average from the errors
        to ensure that the exogeneity assumption is still fulfflled.
        3NEKN96
        res_OLS_nonLinear = OLS( endog =y_exp , exog = add_constant (X)). fit ()
        res_OLS_transformed = OLS ( endog =np.log ( y_exp ), exog = add_constant (X)). fit ()
        ˆ Add the regression tables of the non-transformed and transformed regressions
        ˆ In a paragraph, does the transformed model fft the population regression function?
        Finally, re-run the simulations and transformed estimation with a small sample, n = 30
        ˆ Add the regression table of the transformed small-sample estimate
        ˆ Now, re-do this estimate several times
        7 and observe how the parameter estimates behave. Do
        the non-normal errors seem to be a problem in this spot?
        Hint: Do the parameters seem centered around the population values? Do we reject H0 : βi = 0?
        ˆ In a paragraph, discuss why assuming a non-normal distribution makes it hard to ffnd the
        distributional form under a TRUE null hypothesis, H0 ⇒ Distribution?
        Hint: Why is the central limit theorem key for most inferences?
        Q4 - Heteroscedasticity
        Suggest a way to create heteroscedasticity in the population regression function.
        8
        ˆ Write down the updated population regression function in mathematical notation
        ˆ Estimate the regression function assuming homoscedasticity (as usual)
        ˆ Adjust the standard errors using a Heteroscedastic Autocorrelated Consistent (HAC) estimator
        (clearly state which HAC estimator you use)
        ˆ Add the tables of both the unadjusted and adjusted estimates
        ˆ In a paragraph, discuss if the HAC adjustment to the standard errors makes sense given the
        way you created the heteroscedasticity. Did the HAC adjustment seem to ffx the problem?
        Hint: Bias? Efffcient?
        7Using a random seed for each estimate.
        8Tip: Double-check by simulating the model and plotting the residuals against one of the regressors. Does it look
        heteroscedastic?


        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






         

        掃一掃在手機打開當前頁
      1. 上一篇:ITMF7.120代寫、代做Python編程設計
      2. 下一篇:代做COMP 412、代寫python設計編程
      3. ·CRICOS編程代做、代寫Java程序設計
      4. ·MDSB22代做、代寫C++,Java程序設計
      5. ·代做Electric Vehicle Adoption Tools 、代寫Java程序設計
      6. ·代做INFO90001、代寫c/c++,Java程序設計
      7. · COMP1711代寫、代做C++,Java程序設計
      8. ·GameStonk Share Trading代做、java程序設計代寫
      9. ·CSIT213代做、代寫Java程序設計
      10. ·CHC5223代做、java程序設計代寫
      11. ·代做INFS 2042、Java程序設計代寫
      12. ·代寫CPT206、Java程序設計代做
      13. 合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      14. 短信驗證碼 酒店vi設計 NBA直播 幣安下載

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        在线精品一卡乱码免费| 秋霞久久国产精品电影院| 国产精品一区二区毛卡片| 3d动漫精品啪啪一区二区中 | 最新精品露脸国产在线| 合区精品中文字幕| 日韩精品无码一区二区视频| 成人精品国产亚洲欧洲 | 国产精品午夜爆乳美女视频| 亚洲精品国产第一综合99久久| 91热成人精品国产免费| 精品三级AV无码一区| 久久久久久一品道精品免费看| 国产精品视频白浆免费视频| 国内精品久久久久影院优| 国产亚洲精品自在线观看| 国产三级国产精品国产普男人| 国产精品福利一区二区久久| 久久精品国产亚洲精品2020 | 精品久久免费视频| 亚洲精品蜜夜内射| 国产午夜亚洲精品国产| 香蕉视频国产精品| 国产精品视频一区二区三区四 | 日韩aⅴ人妻无码一区二区| 中文字幕av日韩精品一区二区| 日韩在线中文字幕制服丝袜 | 国产精品日韩一区二区三区| 国产精品视_精品国产免费| 日韩精品午夜视频一区二区三区| 日本精品一区二区三区视频| 国产精品视频1区| 亚洲日韩涩涩成人午夜私人影院| 亚洲免费日韩无码系列 | 日韩人妻不卡一区二区三区| 手机看片日韩福利| 日韩好片一区二区在线看| 亚洲 欧洲 日韩 综合在线| 日韩av激情在线观看| 无码日韩精品一区二区人妻| 任我爽精品视频在线播放|