合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代寫INFS3208、代做Python語言編程
        代寫INFS3208、代做Python語言編程

        時(shí)間:2024-10-11  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        School of Information Technology and Electrical Engineering 
        INFS**08 – Cloud Computing 
        Programming Assignment Task III (10 Marks) 
        Task description: 
        In this assignment, you are asked to write a piece of Spark code to count occurrences of verbs in the 
        UN debates and find the most similar debate contents. The returned result should be the top 10 
        verbs that are most frequently used in all debates and the debate that is most similar to the one 
        we provide. This assignment is to test your ability to use transformation and action operations in Spark 
        RDD programming and your understanding of Vector Database. You will be given three files, 
        including a UN General Debates dataset (un-general-debates.csv), a verb list (all_verbs.txt) 
        and a verb dictionary file (verb_dict.txt). These source files are expected to be stored in a HDFS. 
        You can choose either Scala or Python to complete this assignment in the Jupyter Notebook. There are 
        some technical requirements in your code submission as follows: 
         
        Objectives: 
        1. Read Source Files from HDFS and Create RDDs (1.5 marks): 
        • Read the UN General Debates dataset (un-general-debates.csv) from HDFS and 
        convert only the “text” column into an RDD. Details of un-general-debates.csv are 
        provided in the Preparation section below (1 mark). 
        • Read the verb list file (all_verbs.txt) and verb dictionary file (verb_dict.txt) from 
        HDFS and load them into separate RDDs (0.5 marks). 
        • Note: If you failed to read files from HDFS, you can still read them from the local file 
        system in work/nbs/ and complete the following tasks. 
        2. Use Learned RDD Operations to Preprocess the Debate Texts (3 marks): 
        • Remove empty lines (0.5 marks). 
        • Remove punctuations that could attach to the verbs (0.5 marks). 
        o E.g., “work,” and “work” will be counted differently, if you DO NOT remove the 
        punctuation. 
        • Change the capitalization or case of text (0.5 marks). 
        o E.g., “WORK”, “Work” and “work” will be counted as three different verbs, if you 
        DO NOT make all of them in lower-case. 
        • Find all verbs in the RDD by matching the words in the given verb list (all_verbs.txt) 
        (0.5 mark). 
        • Convert all verbs in different tenses into the simple present tense by looking up the 
        verbs in the verb dictionary list (verb_dict.txt) (1 mark). 
        o E.g., regular verb: “work” - works”, “worked”, and “working”. 
        o E.g., irregular verb: “begin” - “begins”, “began”, and “begun”. o E.g., linking verb “be” and its various forms, including “is”, “am”, “are”, “was”, 
        “were”, “being” and “been”. 
        o E.g., (work, 100), (works,50), (working,150) should be counted as (work, 300). 
        3. Use learned RDD Operations to Count Verb Frequency (3 marks): 
        • Count the top 10 frequently used verbs in UN debates (2 marks). 
        • Display the results in the format (“verb1”, count1), (“verb2”, count2), … and in a 
        descending order of the counts (1 marks). 
        4. Use Vector Database (Faiss) to Find the Most Similar Debate (2.5 marks): 
        • Convert the original debates into vectors and store them in a proper Index (1.5 mark). 
        • Search the debate content that has the most similar idea to “Global climate change is 
        both a serious threat to our planet and survival.” (1 mark) 
         
         
        Preparation: 
        In this individual coding assignment, you will apply your knowledge of Vector Database, Spark, Spark 
        RDD Programming and HDFS (in Lectures 7-10). Firstly, you should read Task Description to 
        understand what the task is and what the technical requirements include. Secondly, you should review 
        the creation and usage of Faiss, transformations and actions in Spark, and usage of HDFS in Lectures 
        and Practicals 7-10. In the Appendix, there are some transformation and action operations you could 
        use in this assignment. Lastly, you need to write the code (Scala or Python) in the Jupyter Notebook. 
        All technical requirements need to be fully met to achieve full marks. You can either practise on 
        the GCP’s VM or your local machine with Oracle Virtualbox if you are unable to access GCP. Please 
        read the Example of writing Spark code below to have more details. 
         
         
        Assignment Submission: 
         You need to compress only the Jupyter Notebook (.ipynb) file. 
         The name of the compressed file should be named “FirstName_LastName_StudentNo.zip”. 
         You must make an online submission to Blackboard before 3:00 PM on Friday, 11/10/2024 
         Only one extension application could be approved due to medical conditions. 
         
         
        Main Steps: 
        Step 1: 
        Log in your VM instance and change to your home directory. We recommend using a VM instance 
        with at least 4 vCPUs, 8G memory and 20GB free disk space. 
         
        Step 2: 
        git clone https://github.com/csenw/cca3.git && cd cca3 
        Run these commands to download the required docker-compose.yml file and configuration files. Step 3: 
        sudo chmod -R 777 nbs/ 
        docker-compose up -d 
        Run all the containers using docker-compose 
         
         
         
        Step 4: 
        Open the Jupyter Notebook (http://external_IP:8888) and you can find all the files under the 
        work/nbs/ folder. This is also the folder where you should write the notebook (.ipynb) file. 
         
         Step 5: 
        docker ps 
        docker exec <container_id> hdfs dfs -put /home/nbs/all_verbs.txt /all_verbs.txt 
        docker exec <container_id> hdfs dfs -put /home/nbs/verb_dict.txt /verb_dict.txt 
        docker exec <container_id> hdfs dfs -put /home/nbs/un-general-debates.csv /ungeneral-debates.csv

        Run the above commands to put the three source files into HDFS. Substitute <container_id> with 
        your namenode container ID. After that, you should see the three files from HDFS web interface at 
        http://external_IP/explorer.html 
         
         
        Step 6: 
        The un-general-debates.csv is a dataset that includes the text of each country’s statement from 
        the general debate, separated by “country”, “session”, “year” and “text”. This dataset includes over 
        forty years of data from different countries, which allows for the exploration of differences between 
        countries and over time [1,2]. It is organized in the following format: 
         
        In this assignment, we only consider the “text” column. 
        The verb_dict.txt file contains different tenses of each verb, separated by commas. The first word 
        is the simple present tense of the verb. 
         The all_verbs.txt file contains all the verbs. 
         
         
        Step 7: 
        Create a Jupyter Notebook to complete the programming objectives. 
        We provide some intermediate output samples below. Please note that these outputs are NOT answers 
        and may vary from your outputs due to different implementations and different Spark behaviours. 
        • Intermediate output sample 1, take only verbs: 
         
         
        • Intermediate output sample 2, top 10 verb counts (without converting verb tenses): 
         
         • Intermediate output sample 3, most similar debate: 
         
        You are free to use your own implementation. However, your result should reasonably reflect the top 
        10 verbs that are most frequently used in UN debates, and the most similar debate contents to the 
        sentence “Global climate change is both a serious threat to our planet and survival.” 
         
         
        Reference: 
        [1] UN General Debates, https://www.kaggle.com/datasets/unitednations/un-general-debates. 
        [2] Alexander Baturo, Niheer Dasandi, and Slava Mikhaylov, "Understanding State Preferences With 
        Text As Data: Introducing the UN General Debate Corpus". Research & Politics, 2017. 
         
         Appendix: 
        Transformations: 
        Transformation Meaning 
        map(func) Return a new distributed dataset formed by passing each element of the 
        source through a function func. 
        filter(func) Return a new dataset formed by selecting those elements of the source on 
        which funcreturns true. 
        flatMap(func) Similar to map, but each input item can be mapped to 0 or more output 
        items (so funcshould return a Seq rather than a single item). 
        union(otherDataset) Return a new dataset that contains the union of the elements in the source 
        dataset and the argument. 
        intersection(otherDataset) Return a new RDD that contains the intersection of elements in the source 
        dataset and the argument. 
        distinct([numPartitions])) Return a new dataset that contains the distinct elements of the source 
        dataset. 
        groupByKey([numPartitions]) When called on a dataset of (K, V) pairs, returns a dataset of (K, 
        Iterable<V>) pairs. 
        Note: If you are grouping in order to perform an aggregation (such as a 
        sum or average) over each key, using reduceByKey or aggregateByKey will 
        yield much better performance. 
        Note: By default, the level of parallelism in the output depends on the 
        number of partitions of the parent RDD. You can pass an 
        optional numPartitions argument to set a different number of tasks. 
        reduceByKey(func, 
        [numPartitions]) 
        When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs 
        where the values for each key are aggregated using the given reduce 
        function func, which must be of type (V,V) => V. Like in groupByKey, the 
        number of reduce tasks is configurable through an optional second 
        argument. 
        sortByKey([ascending], 
        [numPartitions]) 
        When called on a dataset of (K, V) pairs where K implements Ordered, 
        returns a dataset of (K, V) pairs sorted by keys in ascending or descending 
        order, as specified in the boolean ascending argument. 
        join(otherDataset, 
        [numPartitions]) 
        When called on datasets of type (K, V) and (K, W), returns a dataset of (K, 
        (V, W)) pairs with all pairs of elements for each key. Outer joins are 
        supported through leftOuterJoin, rightOuterJoin, and fullOuterJoin. 
         
         Actions: 
        Action Meaning 
        reduce(func) Aggregate the elements of the dataset using a function func (which takes 
        two arguments and returns one). The function should be commutative 
        and associative so that it can be computed correctly in parallel. 
        collect() Return all the elements of the dataset as an array at the driver program. 
        This is usually useful after a filter or other operation that returns a 
        sufficiently small subset of the data. 
        count() Return the number of elements in the dataset. 
        first() Return the first element of the dataset (similar to take(1)). 
        take(n) Return an array with the first n elements of the dataset. 
        countByKey() Only available on RDDs of type (K, V). Returns a hashmap of (K, Int) pairs 
        with the count of each key. 
        foreach(func) Run a function func on each element of the dataset. This is usually done 
        for side effects such as updating an Accumulator or interacting with 
        external storage systems. 
        Note: modifying variables other than Accumulators outside of 
        the foreach() may result in undefined behavior. See Understanding 
        closures for more details. 
         
        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




         

        掃一掃在手機(jī)打開當(dāng)前頁
      1. 上一篇:代寫comp2022、代做c/c++,Python程序設(shè)計(jì)
      2. 下一篇:代做320SC編程、代寫Python設(shè)計(jì)程序
      3. 無相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        出評(píng) 開團(tuán)工具
        出評(píng) 開團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        戴納斯帝壁掛爐全國售后服務(wù)電話24小時(shí)官網(wǎng)400(全國服務(wù)熱線)
        戴納斯帝壁掛爐全國售后服務(wù)電話24小時(shí)官網(wǎng)
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話24小時(shí)服務(wù)熱線
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話2
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時(shí)客服熱線
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時(shí)
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
      4. 短信驗(yàn)證碼 酒店vi設(shè)計(jì)

        国产精品99久久久久久宅男小说 | 国产精品国产色综合色| 精品日韩99亚洲的在线发布| 日韩精品一区二区三区大桥未久| 久久久精品视频免费观看| 精品日韩一区二区三区视频| 国产精品美女久久久网站动漫| 一本一本久久a久久综合精品蜜桃| 78成人精品电影在线播放| 久久国产精品免费视频| 久久福利青草精品资源站免费| 国产在线观看高清精品| 国产网红主播无码精品| 亚洲精品视频在线观看你懂的 | 色国产精品一区在线观看| 狠狠色丁香婷婷综合精品视频| 中文国产成人精品久久一区| 国产日韩久久久精品影院首页 | 国产福利一区二区精品秒拍| 精品毛片乱码1区2区3区| 国内精品乱码卡1卡2卡3免费| 精品无人区一区二区三区在线| 999精品视频在线观看| 亚洲国产精品不卡在线电影| 久久久精品免费视频| 亚洲av无码乱码国产精品| 久久精品国产亚洲网站| 国产午夜福利精品一区二区三区| 91精品视频网站| 99精品在线观看| 亚洲精品无码永久中文字幕 | 好吊操这里只有精品| 无码精品A∨在线观看无广告| 国产精品毛片AV久久66| 思思99re66在线精品免费观看| 国产精品嫩草影院AV| 日韩精品亚洲专区在线影视| 国产精品视频免费一区二区三区| 精品国产_亚洲人成在线| 精品久久中文字幕| 国产成人精品午夜在线播放|