合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代做ENG5027、代寫Python編程設(shè)計(jì)
        代做ENG5027、代寫Python編程設(shè)計(jì)

        時(shí)間:2024-10-17  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        Assignment 1 
        Digital Signal Processing 
        Fourier Transform 
         
        University of Glasgow, James Watt School of Engineering 
         
        Rami Ghannam & Scott Watson 
         
        This assignment is about the Fourier Transform, how to enhance your voice and reduce artefacts. 
         
        Form groups of 4-6, work together and submit one report. Enter your team into the Wiki on 
        moodle listing your names and matriculation numbers. There is a forum on the moodle you may 
        use the moodle forum to find team-mates. 
         
        Record the voice with a handheld mic of one member of your group in uncompressed WAV format. 
        Record a sentence at a Mic / speaker distance of 1cm. 
        Make sure that you record at least at 44.1kHz or at a higher sampling rate and that the audio is not 
        clipping. The full audio spectrum up to 20kHz needs to be available. Low quality MP3 downloads 
        from websites converted to WAV are not allowed and won’t be marked. Reports based on 
        recordings at sampling rates below 44kHz or downloads will not be marked. 
         
         1. Load the audio samples into python. 
        1. plot the audio signals in the time domain (linear axis: normalised amplitudes -1..+1 vs 
        time) and 
        2. in the frequency domain (logarithmic axis for both frequency and amplitude in dB) with 
        proper axis labels. Check out professional diagrams how to plot frequency spectra. 
        In both cases make sure you save your graphs a vector format (svg, pdf, ...) 
         
        2. Use a vector-drawing program (Inkscape, Illustrator, drawio, ...) and mark 
        1. the peaks in the spectrum which correspond to the fundamental frequencies of the 
        vowels spoken. 
        2. Mark up the frequency range which mainly contains the harmonics. 
        3. Mark up the frequency bands which most likely just contains noise and explain that in 
        the context how humans produce sound and how they perceive it. 
        Provide brief explanations. 30% 
         
        3. Using the speech audio you recorded, improve the quality of the voice, in particular by 
        manipulating the frequency bands above 3kHz with the Fourier Transform. This is not about 
        removing noise but to make the voice sounding perceptually more pleasant and interesting. 
        Provide an explanation. 30%  
        4. The so-called aural exciter sends a small amount of the sound through a non-linearity, for 
        example tanh and then adds this to the original signal. This makes the voice perceptually 
        louder. Your task is to experiment with this by sending different frequency ranges through 
        the non-linearity and then perhaps limiting the frequency band after the non-linearity and 
        finally adding to the original signal. Here is an article about the original exciter: 
        https://www.muzines.co.uk/articles/aphex-aural-exciter-type-b/2850 Nowadays it’s done 
        of course digitally and your task is to create one in python. 40%. 
         
        The report should be brief, concentrating on the technical aspects and why you have done the 
        different steps. Do not add generic theory about voice or Fourier Transform. Just describe the 
        method and the result. Complete PYTHON code must be included in the appendix and submitted 
        via moodle alongside the report. All figures inline in the report must be high quality graphics in 
        vector format. Blurry jpeg figures or screenshots will not be marked. Figure out early on how to 
        add high quality graphics to your document such as EPS or SVG. Submission must be PDF. Generally 
        Word loves SVG and LaTeX takes PDF or EPS. 
         
        Upload your code, data/WAV files to moodle in form as a single zip file. Follow exactly the naming 
        conventions for all files as specified on moodle. The scripts will be tested under Linux from the 
        command line (so not rely on Spyder, Pycharm or Vscode: your program must launch and run in 
        the terminal). Make sure your code is platform-independent and does not contain absolute paths. 
        Code that crashes will result in low marks. The same applies for code which won't display any 
        plots, for example forgetting "plt.show()". Your audio files must be original ones and WAV 16 bit. 
        No high level python signal processing / filtering commands are allowed except of the numpy FFT 
        and IFFT commands. 
         
        We recommend that you test your submission by passing it to someone else in your group who 
        should unpack it and run it in a new directory from the command line. It is very easy to lose marks 
        by forgetting to include in your submitted package files you have written and that you require for 
        you code to run. 
         
        Deadline: 21st Oct, 3pm on moodle. 
         
        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





         

        掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
      1. 上一篇:CS 520代寫、代做Java語(yǔ)言程序
      2. 下一篇:代寫INFO1113、Java編程設(shè)計(jì)代做
      3. 無(wú)相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        出評(píng) 開(kāi)團(tuán)工具
        出評(píng) 開(kāi)團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士2號(hào)線
        合肥機(jī)場(chǎng)巴士2號(hào)線
        合肥機(jī)場(chǎng)巴士1號(hào)線
        合肥機(jī)場(chǎng)巴士1號(hào)線
      4. 短信驗(yàn)證碼 酒店vi設(shè)計(jì) NBA直播 幣安下載

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號(hào)-3 公安備 42010502001045

        中文字幕日韩丝袜一区| 久久99精品久久久久久水蜜桃| 久久久久久亚洲精品不卡| 免费精品国自产拍在线播放| 国产精品香蕉在线观看不卡| 免费精品国偷自产在线在线| 国产一区精品视频| 久久久国产精品va麻豆| 国产精品久久精品| 在线精品国产一区二区| 久久午夜精品视频| 国产精品三级在线观看无码| 思思久久精品在热线热| 嘿嘿射久草日韩视频| 最新69国产成人精品免费视频动漫| 一本精品中文字幕在线| 99精品热这里只有精品| 国产精品视频a播放| 国产日韩精品在线| 国产精品臀控福利在线观看 | 2021精品国产品免费观看| 人人妻人人澡人人爽人人精品| 久久精品国产亚洲AV网站| 久久国产乱子伦精品免费强| 亚洲精品乱码久久久久久久久久久久| 精品久久久久久无码免费| 精品久久久久久国产免费了| 国产偷国产偷高清精品| 国产精品亚洲产品一区二区三区 | 在线观看国产精品麻豆| 精品免费久久久久久成人影院| 日本精品视频一区二区三区| 国产视频精品免费| 国产精品观看在线亚洲人成网 | 日韩精品一区二区三区毛片| 精品中文字幕久久久久久| 日本一区二区三区精品视频| 日韩精品一区二区三区国语自制| 国产精品老熟女露脸视频| 国产在线精品无码二区二区| 日韩电影久久久被窝网|