合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代寫Neural Networks for Image 編程
        代寫Neural Networks for Image 編程

        時間:2024-11-08  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        Lab 2: Neural Networks for Image 
        Classification
        Duration: 2 hours
        Tools:
        • Jupyter Notebook
        • IDE: PyCharm==2024.2.3 (or any IDE of your choice)
        • Python: 3.12
        • Libraries:
        o PyTorch==2.4.0
        o TorchVision==0.19.0
        o Matplotlib==3.9.2
        Learning Objectives:
        • Understand the basic architecture of a neural network.
        • Load and explore the CIFAR-10 dataset.
        • Implement and train a neural network, individualized by your QMUL ID.
        • Verify machine learning concepts such as accuracy, loss, and evaluation metrics 
        by running predefined code.
        Lab Outline:
        In this lab, you will implement a simple neural network model to classify images from 
        the CIFAR-10 dataset. The task will be individualized based on your QMUL ID to ensure 
        unique configurations for each student.
        1. Task 1: Understanding the CIFAR-10 Dataset
        • The CIFAR-10 dataset consists of 60,000 **x** color images categorized into 10 
        classes (airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks).
        • The dataset is divided into 50,000 training images and 10,000 testing images.
        • You will load the CIFAR-10 dataset using PyTorch’s built-in torchvision library.
        Step-by-step Instructions:
        1. Open the provided Jupyter Notebook.
        2. Load and explore the CIFAR-10 dataset using the following code:
        import torchvision.transforms as transforms
        import torchvision.datasets as datasets
        # Basic transformations for the CIFAR-10 dataset
        transform = transforms.Compose([transforms.ToTensor(), 
        transforms.Normalize((0.5,), (0.5,))])
        # Load the CIFAR-10 dataset
        dataset = datasets.CIFAR10(root='./data', train=True, 
        download=True, transform=transform)
        2. Task 2: Individualized Neural Network Implementation, Training, and Test
        You will implement a neural network model to classify images from the CIFAR-10 
        dataset. However, certain parts of the task will be individualized based on your QMUL 
        ID. Follow the instructions carefully to ensure your model’s configuration is unique.
        Step 1: Dataset Split Based on Your QMUL ID
        You will use the last digit of your QMUL ID to define the training-validation split:
        • If your ID ends in 0-4: use a 70-30 split (70% training, 30% validation).
        • If your ID ends in 5-9: use an 80-20 split (80% training, 20% validation).
        Code:
        from torch.utils.data import random_split
        # Set the student's last digit of the ID (replace with 
        your own last digit)
        last_digit_of_id = 7 # Example: Replace this with the 
        last digit of your QMUL ID
        # Define the split ratio based on QMUL ID
        split_ratio = 0.7 if last_digit_of_id <= 4 else 0.8
        # Split the dataset
        train_size = int(split_ratio * len(dataset))
        val_size = len(dataset) - train_size
        train_dataset, val_dataset = random_split(dataset, 
        [train_size, val_size])
        # DataLoaders
        from torch.utils.data import DataLoader
        batch_size = ** + last_digit_of_id # Batch size is ** + 
        last digit of your QMUL ID
        train_loader = DataLoader(train_dataset, 
        batch_size=batch_size, shuffle=True)
        val_loader = DataLoader(val_dataset, 
        batch_size=batch_size, shuffle=False)
        print(f"Training on {train_size} images, Validating on 
        {val_size} images.")
        Step 2: Predefined Neural Network Model
        You will use a predefined neural network architecture provided in the lab. The model’s 
        hyperparameters will be customized based on your QMUL ID.
        1. Learning Rate: Set the learning rate to 0.001 + (last digit of your QMUL ID * 
        0.0001).
        2. Number of Epochs: Train your model for 10 + (last digit of your QMUL ID) 
        epochs.
        Code:
        import torch
        import torch.optim as optim
        # Define the model
        model = torch.nn.Sequential(
         torch.nn.Flatten(),
         torch.nn.Linear(******3, 512),
         torch.nn.ReLU(),
         torch.nn.Linear(512, 10) # 10 output classes for 
        CIFAR-10
        )
        # Loss function and optimizer
        criterion = torch.nn.CrossEntropyLoss()
        # Learning rate based on QMUL ID
        learning_rate = 0.001 + (last_digit_of_id * 0.0001)
        optimizer = optim.Adam(model.parameters(), 
        lr=learning_rate)
        # Number of epochs based on QMUL ID
        num_epochs = 100 + last_digit_of_id
        print(f"Training for {num_epochs} epochs with learning 
        rate {learning_rate}.")
        Step 3: Model Training and Evaluation
        Use the provided training loop to train your model and evaluate it on the validation set. 
        Track the loss and accuracy during the training process.
        Expected Output: For training with around 100 epochs, it may take 0.5~1 hour to finish. 
        You may see a lower accuracy, especially for the validation accuracy, due to the lower 
        number of epochs or the used simple neural network model, etc. If you are interested, 
        you can find more advanced open-sourced codes to test and improve the performance. 
        In this case, it may require a long training time on the CPU-based device.
        Code:
        # Training loop
        train_losses = [] 
        train_accuracies = []
        val_accuracies = []
        for epoch in range(num_epochs):
         model.train()
         running_loss = 0.0
         correct = 0
         total = 0
         for inputs, labels in train_loader:
         optimizer.zero_grad()
         outputs = model(inputs)
         loss = criterion(outputs, labels)
         loss.backward()
         optimizer.step()
         
         running_loss += loss.item()
         _, predicted = torch.max(outputs, 1)
         total += labels.size(0)
         correct += (predicted == labels).sum().item()
         train_accuracy = 100 * correct / total
         print(f"Epoch {epoch+1}/{num_epochs}, Loss: 
        {running_loss:.4f}, Training Accuracy: 
        {train_accuracy:.2f}%")
         
         # Validation step
         model.eval()
         correct = 0
         total = 0
         with torch.no_grad():
         for inputs, labels in val_loader:
         outputs = model(inputs)
         _, predicted = torch.max(outputs, 1)
         total += labels.size(0)
         correct += (predicted == labels).sum().item()
         
         val_accuracy = 100 * correct / total
         print(f"Validation Accuracy after Epoch {epoch + 1}: 
        {val_accuracy:.2f}%")
         train_losses.append(running_loss) 
         train_accuracies.append(train_accuracy)
         val_accuracies.append(val_accuracy)
        Task 3: Visualizing and Analyzing the Results
        Visualize the results of the training and validation process. Generate the following plots 
        using Matplotlib:
        • Training Loss vs. Epochs.
        • Training and Validation Accuracy vs. Epochs.
        Code for Visualization:
        import matplotlib.pyplot as plt
        # Plot Loss
        plt.figure()
        plt.plot(range(1, num_epochs + 1), train_losses, 
        label="Training Loss")
        plt.xlabel("Epochs")
        plt.ylabel("Loss")
        plt.title("Training Loss")
        plt.legend()
        plt.show()
        # Plot Accuracy
        plt.figure()
        plt.plot(range(1, num_epochs + 1), train_accuracies, 
        label="Training Accuracy")
        plt.plot(range(1, num_epochs + 1), val_accuracies, 
        label="Validation Accuracy")
        plt.xlabel("Epochs")
        plt.ylabel("Accuracy")
        plt.title("Training and Validation Accuracy")
        plt.legend()
        plt.show()
        Lab Report Submission and Marking Criteria
        After completing the lab, you need to submit a report that includes:
        1. Individualized Setup (20/100):
        o Clearly state the unique configurations used based on your QMUL ID, 
        including dataset split, number of epochs, learning rate, and batch size.
        2. Neural Network Architecture and Training (30/100):
        o Provide an explanation of the model architecture (i.e., the number of input 
        layer, hidden layer, and output layer, activation function) and training 
        procedure (i.e., the used optimizer).
        o Include the plots of training loss, training and validation accuracy.
        3. Results Analysis (30/100):
        o Provide analysis of the training and validation performance.
        o Reflect on whether the model is overfitting or underfitting based on the 
        provided results.
        4. Concept Verification (20/100):
        o Answer the provided questions below regarding machine learning 
        concepts.
        (1) What is overfitting issue? List TWO methods for addressing the overfitting 
        issue.
        (2) What is the role of loss function? List TWO representative loss functions.

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





         

        掃一掃在手機打開當前頁
      1. 上一篇:CPSC 471代寫、代做Python語言程序
      2. 下一篇:代做INT2067、Python編程設計代寫
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 短信驗證碼 酒店vi設計

        国产精品主播一区二区| 国产精品99re| 国内精品免费视频精选在线观看| 精品一区二区三区水蜜桃| 国产成人亚洲精品91专区高清 | 国产精品青草久久久久福利99| 中文字幕日韩三级| 精品国产丝袜自在线拍国| 国产精品天天影视久久综合网| 99久久久国产精品免费牛牛| 久久精品视频99| 日本人精品video黑人| 99re这里只有精品热久久| 国产精品亚洲αv天堂无码| mm1313亚洲精品国产| 午夜亚洲av永久无码精品| 亚洲日韩AV一区二区三区中文| 国产一区二区精品久久91| 国产精品久久久久久网站| 女同久久精品国产99国产精品| 久久精品女人天堂AV| 精品亚洲国产成人av| 国产精品嫩草影院AV| 精品视频国产狼友视频| 精品日产卡一卡二卡三入口| 亚洲av永久无码精品网址| 免费精品国产自产拍在线观看图片| 四虎国产精品高清在线观看| 亚洲精品免费在线| 国产精品成人观看视频国产| 精品欧洲av无码一区二区三区| 精品久久久久久中文字幕大豆网| 91精品久久久久久无码| 亚洲精品第一国产综合野| 国产精品蜜芽在线观看| 窝窝午夜看片成人精品| 亚洲日韩精品国产一区二区三区 | 国产午夜精品一区二区| 三级精品在线观看| 国产揄拍国产精品| 日本精品不卡视频|