合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代寫Neural Networks for Image 編程
        代寫Neural Networks for Image 編程

        時間:2024-11-08  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        Lab 2: Neural Networks for Image 
        Classification
        Duration: 2 hours
        Tools:
        • Jupyter Notebook
        • IDE: PyCharm==2024.2.3 (or any IDE of your choice)
        • Python: 3.12
        • Libraries:
        o PyTorch==2.4.0
        o TorchVision==0.19.0
        o Matplotlib==3.9.2
        Learning Objectives:
        • Understand the basic architecture of a neural network.
        • Load and explore the CIFAR-10 dataset.
        • Implement and train a neural network, individualized by your QMUL ID.
        • Verify machine learning concepts such as accuracy, loss, and evaluation metrics 
        by running predefined code.
        Lab Outline:
        In this lab, you will implement a simple neural network model to classify images from 
        the CIFAR-10 dataset. The task will be individualized based on your QMUL ID to ensure 
        unique configurations for each student.
        1. Task 1: Understanding the CIFAR-10 Dataset
        • The CIFAR-10 dataset consists of 60,000 **x** color images categorized into 10 
        classes (airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks).
        • The dataset is divided into 50,000 training images and 10,000 testing images.
        • You will load the CIFAR-10 dataset using PyTorch’s built-in torchvision library.
        Step-by-step Instructions:
        1. Open the provided Jupyter Notebook.
        2. Load and explore the CIFAR-10 dataset using the following code:
        import torchvision.transforms as transforms
        import torchvision.datasets as datasets
        # Basic transformations for the CIFAR-10 dataset
        transform = transforms.Compose([transforms.ToTensor(), 
        transforms.Normalize((0.5,), (0.5,))])
        # Load the CIFAR-10 dataset
        dataset = datasets.CIFAR10(root='./data', train=True, 
        download=True, transform=transform)
        2. Task 2: Individualized Neural Network Implementation, Training, and Test
        You will implement a neural network model to classify images from the CIFAR-10 
        dataset. However, certain parts of the task will be individualized based on your QMUL 
        ID. Follow the instructions carefully to ensure your model’s configuration is unique.
        Step 1: Dataset Split Based on Your QMUL ID
        You will use the last digit of your QMUL ID to define the training-validation split:
        • If your ID ends in 0-4: use a 70-30 split (70% training, 30% validation).
        • If your ID ends in 5-9: use an 80-20 split (80% training, 20% validation).
        Code:
        from torch.utils.data import random_split
        # Set the student's last digit of the ID (replace with 
        your own last digit)
        last_digit_of_id = 7 # Example: Replace this with the 
        last digit of your QMUL ID
        # Define the split ratio based on QMUL ID
        split_ratio = 0.7 if last_digit_of_id <= 4 else 0.8
        # Split the dataset
        train_size = int(split_ratio * len(dataset))
        val_size = len(dataset) - train_size
        train_dataset, val_dataset = random_split(dataset, 
        [train_size, val_size])
        # DataLoaders
        from torch.utils.data import DataLoader
        batch_size = ** + last_digit_of_id # Batch size is ** + 
        last digit of your QMUL ID
        train_loader = DataLoader(train_dataset, 
        batch_size=batch_size, shuffle=True)
        val_loader = DataLoader(val_dataset, 
        batch_size=batch_size, shuffle=False)
        print(f"Training on {train_size} images, Validating on 
        {val_size} images.")
        Step 2: Predefined Neural Network Model
        You will use a predefined neural network architecture provided in the lab. The model’s 
        hyperparameters will be customized based on your QMUL ID.
        1. Learning Rate: Set the learning rate to 0.001 + (last digit of your QMUL ID * 
        0.0001).
        2. Number of Epochs: Train your model for 10 + (last digit of your QMUL ID) 
        epochs.
        Code:
        import torch
        import torch.optim as optim
        # Define the model
        model = torch.nn.Sequential(
         torch.nn.Flatten(),
         torch.nn.Linear(******3, 512),
         torch.nn.ReLU(),
         torch.nn.Linear(512, 10) # 10 output classes for 
        CIFAR-10
        )
        # Loss function and optimizer
        criterion = torch.nn.CrossEntropyLoss()
        # Learning rate based on QMUL ID
        learning_rate = 0.001 + (last_digit_of_id * 0.0001)
        optimizer = optim.Adam(model.parameters(), 
        lr=learning_rate)
        # Number of epochs based on QMUL ID
        num_epochs = 100 + last_digit_of_id
        print(f"Training for {num_epochs} epochs with learning 
        rate {learning_rate}.")
        Step 3: Model Training and Evaluation
        Use the provided training loop to train your model and evaluate it on the validation set. 
        Track the loss and accuracy during the training process.
        Expected Output: For training with around 100 epochs, it may take 0.5~1 hour to finish. 
        You may see a lower accuracy, especially for the validation accuracy, due to the lower 
        number of epochs or the used simple neural network model, etc. If you are interested, 
        you can find more advanced open-sourced codes to test and improve the performance. 
        In this case, it may require a long training time on the CPU-based device.
        Code:
        # Training loop
        train_losses = [] 
        train_accuracies = []
        val_accuracies = []
        for epoch in range(num_epochs):
         model.train()
         running_loss = 0.0
         correct = 0
         total = 0
         for inputs, labels in train_loader:
         optimizer.zero_grad()
         outputs = model(inputs)
         loss = criterion(outputs, labels)
         loss.backward()
         optimizer.step()
         
         running_loss += loss.item()
         _, predicted = torch.max(outputs, 1)
         total += labels.size(0)
         correct += (predicted == labels).sum().item()
         train_accuracy = 100 * correct / total
         print(f"Epoch {epoch+1}/{num_epochs}, Loss: 
        {running_loss:.4f}, Training Accuracy: 
        {train_accuracy:.2f}%")
         
         # Validation step
         model.eval()
         correct = 0
         total = 0
         with torch.no_grad():
         for inputs, labels in val_loader:
         outputs = model(inputs)
         _, predicted = torch.max(outputs, 1)
         total += labels.size(0)
         correct += (predicted == labels).sum().item()
         
         val_accuracy = 100 * correct / total
         print(f"Validation Accuracy after Epoch {epoch + 1}: 
        {val_accuracy:.2f}%")
         train_losses.append(running_loss) 
         train_accuracies.append(train_accuracy)
         val_accuracies.append(val_accuracy)
        Task 3: Visualizing and Analyzing the Results
        Visualize the results of the training and validation process. Generate the following plots 
        using Matplotlib:
        • Training Loss vs. Epochs.
        • Training and Validation Accuracy vs. Epochs.
        Code for Visualization:
        import matplotlib.pyplot as plt
        # Plot Loss
        plt.figure()
        plt.plot(range(1, num_epochs + 1), train_losses, 
        label="Training Loss")
        plt.xlabel("Epochs")
        plt.ylabel("Loss")
        plt.title("Training Loss")
        plt.legend()
        plt.show()
        # Plot Accuracy
        plt.figure()
        plt.plot(range(1, num_epochs + 1), train_accuracies, 
        label="Training Accuracy")
        plt.plot(range(1, num_epochs + 1), val_accuracies, 
        label="Validation Accuracy")
        plt.xlabel("Epochs")
        plt.ylabel("Accuracy")
        plt.title("Training and Validation Accuracy")
        plt.legend()
        plt.show()
        Lab Report Submission and Marking Criteria
        After completing the lab, you need to submit a report that includes:
        1. Individualized Setup (20/100):
        o Clearly state the unique configurations used based on your QMUL ID, 
        including dataset split, number of epochs, learning rate, and batch size.
        2. Neural Network Architecture and Training (30/100):
        o Provide an explanation of the model architecture (i.e., the number of input 
        layer, hidden layer, and output layer, activation function) and training 
        procedure (i.e., the used optimizer).
        o Include the plots of training loss, training and validation accuracy.
        3. Results Analysis (30/100):
        o Provide analysis of the training and validation performance.
        o Reflect on whether the model is overfitting or underfitting based on the 
        provided results.
        4. Concept Verification (20/100):
        o Answer the provided questions below regarding machine learning 
        concepts.
        (1) What is overfitting issue? List TWO methods for addressing the overfitting 
        issue.
        (2) What is the role of loss function? List TWO representative loss functions.

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





         

        掃一掃在手機打開當前頁
      1. 上一篇:CPSC 471代寫、代做Python語言程序
      2. 下一篇:代做INT2067、Python編程設計代寫
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 NBA直播 幣安下載

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        亚洲国产成人91精品| 国产在线精品一区二区三区不卡| 国产美女在线精品观看| 亚洲无删减国产精品一区| 99久久99久久精品| 亚洲日韩精品一区二区三区无码| 国产91在线精品| 无码日韩AV一区二区三区| 亚洲中文字幕久久精品无码2021| 日韩欧国产精品一区综合无码| 中文国产成人精品久久水| 国产精品.XX视频.XXTV| 蜜桃导航一精品导航站| 亚洲欧美日韩综合久久久久| 手机看片福利永久国产日韩| 免费国内精品久久久久影院| 国产国产成人久久精品杨幂| 国产麻豆剧传媒精品网站| 日韩人妻高清精品专区| 精品伊人久久久香线蕉| 国产麻豆剧果冻传媒免精品费网站 | 精品综合一区二区三区| 日韩欧美亚洲国产精品字幕久久久| 亚洲午夜日韩高清一区| 日韩av无码中文无码电影| 日韩精品久久久久久久电影蜜臀 | 无码人妻一区二区三区精品视频 | 99精品国产自在现线观看| 91麻豆国产福利精品| 欧洲熟妇精品视频| 久久99国产精品久久99| 亚洲国产精品无码AAA片| 日韩精品视频免费网址| 亚洲日韩欧洲无码av夜夜摸| 中文字幕日韩高清| 亚洲欧洲日韩在线电影| 日韩精品国产一区| 亚洲国产精品自在拍在线播放| 国产精品原创巨作?v网站| 北条麻妃久久99精品| 国内精品久久久久久99蜜桃|