合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代寫I&C SCI 46 、c/c++,Java程序語言代做
        代寫I&C SCI 46 、c/c++,Java程序語言代做

        時間:2024-11-22  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        I&C SCI 46 Fall 2024 Project 4: Finding Balance in Nature
        Due at 9:30 AM. You may use late submissions as usual.
        Reviewing related material
        I encourage you to review your lecture notes for the Binary Search Tree portions of this class,
        especially the portions about balancing trees. The data structure we covered this quarter for a
        balanced tree is called a Crumple Tree. Supplemental reading is posted on Canvas.
        Very important note: it is not enough to implement some type of binary search tree for this
        assignment. For the vast majority of the points, your type must be a Crumple Tree. Attempting
        to fool the auto-grader is a decidedly bad idea.
        Requirements
        In this project you will be implementing the Level-balanced tree data structure as a class named
        CrumpleTree. The class consists of the following functions which you are responsible for
        implementing and have been started for you in CrumpleTree.hpp:
        CrumpleTree()
        This is the constructor for the class. You should initialize any variables you add to the
        class here.
        ~CrumpleTree()
        This is the class destructor. You are responsible for freeing any allocated memory here.
        You will most likely be allocating memory to store the nodes within the tree. Since these
        allocations need to be dynamic, as we don’t know how large the tree will be, they should
        be freed here in the destructor. It’s your job to come up with a traversal algorithm to
        accomplish this. Note, if you elect to use shared pointers or unique pointers the compiler
        will generate code to deallocate the memory for you if certain conditions are met. You
        should only use these features of the standard library if you already understand them or
        are willing to put in extra effort. In most industry settings features like these will be used
        as opposed to explicitly implemented destructors.
        However, be advised that course staff are not expected to know these and might not be
        able to help you debug problems with them. If you are unfamiliar with shared or unique
        pointers, use traditional (raw) pointers if you are expecting help with debugging.
        [[nodiscard]] size_t size() const noexcept
        This function returns the number of keys stored in the tree. It returns the count as a
        size_t. It is marked const (also known as a constant member function) because it
        should not modify any member variables that you’ve added to the class or call any
        function functions that are not marked const as well. The advantage of marking this
        function as const is that it can be called on constant CrumpleTree instances. It also
        allows the compiler to make additional optimizations since it can assume the object this
        function is called on is not changed. This is a fairly good StackOverflow answer that
        goes into additional detail.
        [[nodiscard]] bool empty() const noexcept
        This function simply returns whether or not the tree is empty, or in other words, if the tree
        contains zero keys. Marked const because it should not change any member data.
        Marked noexcept because it should not throw any exceptions.
        bool contains(const K & key) const noexcept
        Simply checks to see if the key k is stored in the tree. True if so, false if not. Once
        again, this function does not modify any member data, so the function is marked const.
        Since this is a balanced tree, this function should run in O(log N) time where N is the
        number of keys in the tree. This is accomplished through the on-demand balancing
        property of Crumple Trees and a consequence of the height of the tree never exceeding
        O(log N). IMPORTANT: when comparing keys, you can only assume that the < and ==
        operator has been defined. This means you should not use any other comparison
        operators for comparing keys.
        std::optional<unsigned> Level(const K & key) const
        This returns the level on which the given key is stored in the tree. If the tree does not
        contain this key, return std::nullopt.
        IMPORTANT: when comparing keys, you can only assume that the < and == operator
        has been defined. This means you should not use any other comparison operators for
        comparing keys.
        Value & find(const K & key)
        Like contains(), this function searches for key k in the tree. However, this function
        returns a reference to the value stored at this particular key. Since this function is not
        marked const, and it does not return a const reference, this value is modifiable through
        this interface. This function should also run in O(log N) time since it is bound by the
        height of the tree. If the key k is not in the tree, a std::runtime_error should be
        thrown.
        const Value & find(const K & key) const
        Same as the constant version of find, but returns a constant reference to the stored
        value, which prevents modification. This function is marked const to present the find
        (or “lookup”) interface to instances of CrumpleTree which are marked const
        themselves. This means that member data should not be modified in this function. For
        example, the following code would call the version of find() marked constant:
        CrumpleTree<int, int> tree;
        const CrumpleTree<int, int> & treeRef= tree;
        treeRef.find(1);
        Warning: this function will not be compiled until you explicitly call it on a constant
        CrumpleTree as in the example above. If you submit code to GradeScope, and that
        system says it does not compile, make sure you've done this. You will end up with a
        zero on the assignment if your code does not compile when I pair it with test cases that
        call every function. Testing comprehensively is your responsibility!
        void insert(const K & key, const V & value)
        Adds a (key, value) pair to the tree. If the key already exists in the tree, you may do as
        you please (no test cases in the grading script will deal with this situation). The key k
        should be used to identify the location where the pair should be stored, as in a normal
        binary search tree insertion. Since this is an level-balanced tree, the tree should be
        rebalanced if this insertion results in an unbalanced tree.
        Note: this is by far the most difficult part of this project.
        void remove(const K & key)
        Removes the given key from the tree, fixing the balance if needed. If the parameter does
        not exist in the tree, do not modify the tree.
        I recommend you work on both insert and remove in parts; do not attempt to do the
        entire insert, or entire remove, in one session. Test that you are able to get some cases
        to pass before moving onto other types of cases.
        [[nodiscard]] std::vector<K> inOrder() const
        Returns a vector consisting of the keys in the order they would be explored during an
        in-order traversal as mentioned in class. Since the traversal is “in-order”, the keys should
        be in ascending order.
        IMPORTANT: this function, as well as preOrder() and postOrder(), are easy to forget to
        test separately. Be very careful with these three, as their value (in terms of test cases
        that rely on them) is disproportionately high. Please be absolutely sure you got these
        right.
        [[nodiscard]] std::vector<K> preOrder() const
        Returns a pre-ordering of the tree. For the purpose of this assignment, the left subtree
        should be explored before the right subtree.
        [[nodiscard]] std::vector<K> postOrder() const
        Returns a post-ordering of the tree. For the purpose of this assignment, the left subtree
        should be explored before the right subtree.
        Additional Notes
        ● Your implementation must be templated as provided.
        ○ Be sure yours works for non-numeric types! char is a numeric type.
        ○ Review the warnings in the lab manual, the grading policies, and in particular the
        warning about templated code in the “Grading Environment” section.
        ● You do not need to write a copy constructor or an assignment operator on this project,
        but knowing how to do so is generally a good thing.
        ● As stated in the contains() function: for comparing keys, use the “natural” comparison
        offered by <. You should assume that < and == are defined for any object used for Key.
        Any test cases provided will have something for the key that has this defined.
        ● The project will not build by default because a reference to a local variable is returned in
        the find() functions. You will need to write an implementation that doesn’t do this.
        Restrictions
        Your implementation must be implemented via linked nodes in the tree format from the lecture.
        That is, you may not have a “vector-based tree.” This means you will probably need to create a
        new structure inside of your CrumpleTree class which will represent the nodes.
        You may use smart pointers if you would like to do so. However, course staff are not required to
        help you with smart pointers, including debugging code that uses them. I advise students who
        are not already familiar with smart pointers to not use them for this project; they're good to
        learn, but this is not the project on which to learn them.
        You may not use any containers in the C++ standard template library in this assignment except
        for std::vector. Furthermore, std::vector may only be used when implementing the
        three traversals (in-order, pre-order, post-order). For what it’s worth, you won’t miss it for this
        assignment. As always, if there’s an exception that you think is within the spirit of this
        assignment, please let me know.
        Your implementation does not have to be the most efficient thing ever, but it cannot be “too
        slow.” In general, any test case that takes 30 seconds on GradeScope may be deemed a
        wrong answer, even if it will later return a correct one. The memory check cases have a
        significantly higher timeout period, and are cases which your code will very likely complete (if we
        aren't running memcheck on the same code) in milliseconds.
        For any assignment in this class, including this one, you may not use the directive using
        namespace std; anywhere in your code. Doing so will earn you a zero for the project.
        If you are found to be attempting to fool the auto-grader, perhaps by implementing a
        different type of balanced binary search tree, this will be treated as a serious case of
        academic dishonesty -- it will result in a report to AISC and an F in the class.
        In the past, a small subset of students have attempted to contact the inventors of Crumple Trees
        to get help on this project. This does not qualify as seeking reasonable help, and there are
        plenty of UCI course resources available to you.
        Additional Grading Note
        This is an additional warning that the public tests are not comprehensive. Remember that the
        compiler does not compile functions which are not used. Thus, at the bare minimum you should
        add additional unit tests which get all of your code to compile. This has been a problem in the
        past; do not ignore that warning. Using different template types will help to make sure you
        don’t accidentally bake in assumptions about the type of the Key or Value. Always commit your
        unit tests with your code.
        The points available for this project are broken down into three categories:
        ● Basic BST functionality. To have your code tested to earn these points, you must pass
        all test cases marked [RequiredBasicFunctionality]. Nothing in this portion requires that
        you have a balanced tree, although it is possible that a poor implementation of balancing
        could "break" this; please be careful. This portion is worth 1 point
        ● Crumple Tree functionality. To have your code tested to earn these points, you must
        pass all test cases marked [RequiredCrumpleTree]. This portion is worth YY points.
        Note that you do not need full CrumpleTree functionality to pass the required cases,
        which would allow you to be evaluated on the remaining ones. This is one reason we
        recommend you work with cases. This portion is worth 4 points.
        ○ There may be test cases within this that require only insertion procedure to work
        correctly. However, the required case prerequisite requires you to get at least one
        delete case to work properly. This is on purpose.
        ● Memory check. Some of these cases will require some simple functionality to be
        reasonably efficient; this is due to a constraint with how long GradeScope will run a
        submission. We test with small cases that would run quickly if we were not checking for
        memory, and we give a good maximum amount of time for each to run (7-10 minutes
        each). This portion is worth 1 point.
        Frequently Asked Questions (FAQs)
        Q1. Does _____ make problem-solving in this project trivial or is it allowed?
        The following parts are permitted for use in this project: std::pair, std::max, std::abs,
        std::swap. If you have another part of the standard library in mind, please ask on edStem.
        Q2. Are we allowed to include the <functional> library so I can make a lambda function recursive?
        Sure, if you think it will help you.
        Q3. Can I include parts of the standard library to test my trees?
        You can use any library for debugging purposes. The only disallowed functions are for the
        final, active submission, submitted to GradeScope.
        Q4. Can you use the vectors you got from the in-order, pre-order, or post-order functions in other
        functions?
        No. You also don't need to. However, you may use std::vector within helper functions of
        in/pre/post order traversals.
        Q5. Are we allowed to use stacks/queues for the inorder/postorder/preorder functions?
        No. You are not allowed to use any standard containers except for in your traversal
        implementations where you are allowed only std::vector.
        Q6. Are we allowed to use vectors or arrays to store shapes?
        No, but I'm sure you could do the same without using an array or vector.
        Q7. Are > (greater than) and <= (equal to or greater than) off-limits when comparing keys?
        Yes, any other operators other than < (less than) and == (equal to) are off-limits when
        comparing keys.
        Q8. Can I use recursion to destruct the trees?
        You can use recursion for a destructor. However, you should also consider the off chance that
        the stack size is exceeded and the destruction fails resulting in unfreed memory.
        Q9. What to do if the passed in key does not exist in the remove() function?
        You can handle this case as desired; we will not be testing it.
        Q10. If the deleted node is not a leaf and has two children, should we replace it with successor or
        predecessor?
        Both are correct to do, and the grading script will accept either.
        Q11. Do we need to have O(log n) time complexity for insert and remove?
        That is the target time for balanced binary search trees, including Crumple trees.
        Q12. Are we allowed to implement other level-balancing binary search trees on project 4?
        No.
        Q13. Are we expected to handle very large trees?
        Yes, you can assume that the size of the tree will not exceed the maximum uint64_t value.
        Q14. Am I permitted to add my new function to the class?
        Yes. Also, it doesn’t matter where you make the helper functions as long as you don't change
        the public functions and their parameters.

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






         

        掃一掃在手機打開當前頁
      1. 上一篇:CPT205編程代寫、代做C++/Python語言程序
      2. 下一篇:ECE2810J代做、代寫C++語言編程
      3. ·&#160;代寫ICT50220、C++/Java程序語言代做
      4. ·COMP222代寫、Python, Java程序語言代做
      5. ·代寫MISM 6210、Python/java程序語言代做
      6. ·代寫DTS203TC、C++,Java程序語言代做
      7. ·CS 2210編程代寫、Java程序語言代做
      8. 合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      9. 短信驗證碼 酒店vi設計

        国产精品大bbwbbwbbw| 国产精品第12页| 日韩a无v码在线播放| 亚洲精品乱码久久久久蜜桃| 亚洲另类春色国产精品| 无码人妻精品一区二区三区99仓本 | 精品国产亚洲男女在线线电影| 日韩人妻一区二区三区免费| 国产精品天天在线午夜更新| 图片区精品综合自拍| 国产愉拍精品手机| 久久精品网站免费观看| 欧美人妻少妇精品久久黑人| 亚洲国产美女精品久久久| 中文精品一卡2卡3卡4卡| 国产精品美女在线观看| 久久乐国产综合亚洲精品| 亚洲日韩国产精品乱-久| 无码国产精品一区二区免费虚拟VR| 亚洲偷自精品三十六区| 亚洲精品不卡视频| 91麻豆精品一二三区在线| 国产成人精品福利网站在线| 国产精品亚洲片在线va| 精品一久久香蕉国产二月| 99久久99久久精品免费看蜜桃| 国产午夜亚洲精品| 欧美日韩精品乱国产| 热99re久久精品2久久久| 国产精品美女乱子伦高| 国产区香蕉精品系列在线观看不卡| 午夜国产精品久久久久| 久久精品无码一区二区日韩AV | 全国精品一区二区在线观看| 日韩成人一区ftp在线播放| 精品成人一区二区三区免费视频| 精品人妻一区二区三区四区| 亚洲国产主播精品极品网红| 久久久久久久亚洲精品| 亚洲精品无码久久久影院相关影片| 秋霞午夜鲁丝片午夜精品久|