合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        COMP3340代做、代寫Python/Java程序
        COMP3340代做、代寫Python/Java程序

        時間:2025-03-15  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        COMP3340 Applied Deep Learning The University of Hong Kong
        Assignment 1
        Feb 2025
        Question 1 - XOR Approximation
        We consider the problem of designing a feedforward neural network to approximate the XOR
        function. Specifically, for any input points (x1, x2), x1, x2 ∈ {0, 1}, the output of the network
        should be approximately equal to x1 ⊕ x2. Suppose the network has two input neurons, one
        hidden layer with two neurons, and an output layer with one neuron, as shown in Figure 1.
        The activation function for all neurons is the Sigmoid function defined as σ(z) = 1+
        1
        e−z .
        (a) Please provide the specific values for the parameters in your designed network. Demon strate how your network approximates the XOR function (Table 1) by performing forward
        propagation on the given inputs (x1, x2), x1, x2 ∈ {0, 1}.
        (b) If we need the neural network to approximate the XNOR function (Table 1), how should
        we modify the output neuron without altering the neurons in the hidden layer?
        x1 x2 x1 ⊕ x2 x1  x2
        0 0 0 1
        0 1 1 0
        1 0 1 0
        1 1 0 1
        Table 1: XOR and XNOR Value Table
         !
         "
         #
        Figure 1: Network structure and the notation of parameters
        COMP3340 Applied Deep Learning The University of Hong Kong
        Question 2 - Backpropagation
        We consider the problem of the forward pass and backpropagation in a neural network whose
        structure is shown in Figure 1. The network parameters is initialized as w1 = 1, w2 = −2,
        w3 = 2, w4 = −1, w5 = 1, w6 = 1, b1 = b2 = b3 = 0. The activation function for all neurons
        is the Sigmoid function defined as σ(z) = 1+
        1
        e−z .
        (a) Suppose the input sample is (1, 2) and the ground truth label is 0.1. Please compute
        the output y of the network.
        (b) Suppose we use the Mean Squared Error (MSE) loss. Please compute the loss value for
        the sample (1, 2) and its gradient with respect to the network parameters using chain rules.
        The final answer should be limited to 3 significant figures.
        (c) Suppose we use stochastic gradient descent (SGD) with a learning rate of α = 0.1.
        Please specify the parameters of the network after one step of gradient descent, using the
        gradient computed in (b). Please also specify the prediction value and the corresponding loss
        of the new network on the same input (1, 2).

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

        掃一掃在手機打開當前頁
      1. 上一篇:被小豬應急強制下款怎么辦?怎么聯系米來花客服?
      2. 下一篇:CE860代做、代寫C/C++編程設計
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 短信驗證碼 酒店vi設計

        国语精品91自产拍在线观看二区| 久久精品国产这里是免费| 日韩视频在线观看一区二区| 亚洲精品永久在线观看| 56prom在线精品国产| 久久99热精品这里久久精品| 亚洲精品高清国产一线久久| 精品无码三级在线观看视频 | 国产精品一久久香蕉国产线看 | 国产精品白丝喷水在线观看者相| 久久精品国产亚洲av麻豆图片| 午夜精品视频在线| 亚洲av午夜福利精品一区人妖| 中文字幕在线亚洲精品| CHINESE中国精品自拍| 国产精品亚洲精品日韩已方| 日韩a级片在线观看| 日韩精品一线二线三线优势| 中文字幕日韩高清| 日韩一级视频在线观看播放| 国产在线午夜卡精品影院| 国产精品日韩专区| 国内一级特黄女人精品毛片 | 中文精品字幕电影在线播放视频| freesexvideos精品老师毛多| 香蕉依依精品视频在线播放| 精品无码黑人又粗又大又长| 国产日韩在线观看视频网站| 日韩精品一区二区三区国语自制| 亚洲日韩一中文字暮| 日韩中文字幕一区| 日韩人妻无码精品一专区| 国产精品无码日韩欧| 日韩在线永久免费播放| 中文字幕国产日韩| 亚洲日韩aⅴ在线视频| 日韩人妻无码精品系列| 日韩精品电影一区亚洲| 内射中出日韩无国产剧情| 午夜国产精品久久影院| 日韩电影一区二区三区|