合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代寫COMP34212、代做Java/C++編程
        代寫COMP34212、代做Java/C++編程

        時間:2025-04-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        COMP34212 Cognitive Robotics Angelo Cangelosi 
        COMP34212: Coursework on Deep Learning and Robotics
        34212-Lab-S-Report
        Release: February 2025
        Submission deadline: 27 March 2025, 18:00 (BlackBoard)
        Aim and Deliverable
        The aim of this coursework is (i) to analyse the role of the deep learning approach within the 
        context of the state of the art in robotics, and (ii) to develop skills on the design, execution and 
        evaluation of deep neural networks experiments for a vision recognition task. The assignment will 
        in particular address the learning outcome LO1 on the analysis of the methods and software 
        technologies for robotics, and LO3 on applying different machine learning methods for intelligent 
        behaviour.
        The first task is to do a brief literature review of deep learning models in robotics. You can give a 
        summary discussion of various applications of DNN to different robotics domains/applications. 
        Alternatively, you can focus on one robotic application, and discuss the different DNN models used 
        for this application. In either case, the report should show a good understanding of the key works in 
        the topic chosen.
        The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron 
        (MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and 
        analyse new training simulations. This will allow you to evaluate the role of different 
        hyperparameter values and explain and interpret the general pattern of results to optimise the 
        training for robotics (vision) applications.
        You can use the standard object recognition datasets (e.g. CIFAR, COCO, not the simple MNIST) or 
        robotics vision datasets (e.g. iCub World1
        , RGB-D Object Dataset2
        ). You are also allowed to use 
        other deep learning models beyond those presented in the lab.
        The deliverable to submit is a report (max 5 pages including figures/tables and references) to 
        describe and discuss the training simulations done and their context within robotics research and 
        applications. The report must also include the link to the Code/Notebook, or add the code as 
        appendix (the Code Appendix is in addition to the 5 pages of the core report). Do not use AI/LLM 
        models to generate your report. Demonstrate a credible analysis and discussion of your own 
        simulation setup and results, not of generic CNN simulations. And demonstrate a credible, 
        personalised analysis of the literature backed by cited references.
        COMP34212 Cognitive Robotics Angelo Cangelosi 
        Marking Criteria (out of 30)
        1. Contextualisation and state of the art in robotics and deep learning, with proper use of 
        citations backing your academic review and statements (marks given for 
        clarity/completeness of the overview of the state of the art, with spectrum of deep learning 
        methods considered in robotics; credible personalised critical analysis of the deep learning 
        role in robotics; quality and use of the references cited) [10]
        2. A clear introductory to the DNN classification problem and the methodology used, with 
        explanation and justification of the dataset, the network topology and the hyperparameters 
        chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
        3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity 
        and appropriateness of the network topology; hyperparameter exploration approach; data 
        processing and coding requirements) [4]
        4. Description, interpretation, and assessment of the results on the hyperparameter testing 
        simulations; include appropriate figures and tables to support the results; depth of the 
        interpretation and assessment of the quality of the results (the text must clearly and 
        credibly explain the data in the charts/tables); Discussion of alternative/future simulations 
        to complement the results obtained) [13]
        5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if 
        code/notebook (link to external repository or as appendix) is not included.
        Due Date: 27 March 2025, 18:00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



         

        掃一掃在手機打開當前頁
      1. 上一篇:出評 開團工具
      2. 下一篇:INFO20003代做、代寫SQL編程設計
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 短信驗證碼 酒店vi設計

        国产精品免费视频播放器| 国产成人精品免费视频大全麻豆| 日韩免费视频一区二区| 人妻熟妇乱又伦精品HD| 国产精品岛国久久久久| 96免费精品视频在线观看| 久久久这里有精品999| 秋霞久久国产精品电影院| 四虎国产精品免费永久在线| 国产精品手机在线观看你懂的| 精品人妻无码专区在中文字幕| 亚洲欧洲中文日韩久久AV乱码| 国产美女精品三级在线观看| 宅男宅女精品国产av天堂| 精品国产VA久久久久久久冰| 2022国产精品手机在线观看| 久久99精品久久久久久hb无码| 久久精品午夜福利| 亚洲国产精品无码av| 精品国产福利第一区二区三区| 中文字幕精品无码一区二区三区| 久久青青草原精品国产软件| 精品精品国产国产| 国产乱子伦精品无码专区| 国产精品自产拍在线18禁| 国产精品无码不卡一区二区三区| 国产福利电影一区二区三区久久久久成人精品综合 | 精品一区二区ww| 亚洲精品无码少妇30P| 琪琪精品视频在线观看| 97精品国产一区二区三区| 99re最新这里只有精品| 国产精品一区二区不卡| 久久亚洲精品国产精品婷婷| 中文无码精品A∨在线观看不卡| 一区二区亚洲精品精华液| 五月天精品视频在线观看| 国产精品一区二区毛卡片| 国内精品一区二区三区在线观看| 精品国产亚洲一区二区三区在线观看| 日韩成人精品日本亚洲 |