合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代寫COMP34212、代做Java/C++編程
        代寫COMP34212、代做Java/C++編程

        時間:2025-04-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        COMP34212 Cognitive Robotics Angelo Cangelosi 
        COMP34212: Coursework on Deep Learning and Robotics
        34212-Lab-S-Report
        Release: February 2025
        Submission deadline: 27 March 2025, 18:00 (BlackBoard)
        Aim and Deliverable
        The aim of this coursework is (i) to analyse the role of the deep learning approach within the 
        context of the state of the art in robotics, and (ii) to develop skills on the design, execution and 
        evaluation of deep neural networks experiments for a vision recognition task. The assignment will 
        in particular address the learning outcome LO1 on the analysis of the methods and software 
        technologies for robotics, and LO3 on applying different machine learning methods for intelligent 
        behaviour.
        The first task is to do a brief literature review of deep learning models in robotics. You can give a 
        summary discussion of various applications of DNN to different robotics domains/applications. 
        Alternatively, you can focus on one robotic application, and discuss the different DNN models used 
        for this application. In either case, the report should show a good understanding of the key works in 
        the topic chosen.
        The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron 
        (MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and 
        analyse new training simulations. This will allow you to evaluate the role of different 
        hyperparameter values and explain and interpret the general pattern of results to optimise the 
        training for robotics (vision) applications.
        You can use the standard object recognition datasets (e.g. CIFAR, COCO, not the simple MNIST) or 
        robotics vision datasets (e.g. iCub World1
        , RGB-D Object Dataset2
        ). You are also allowed to use 
        other deep learning models beyond those presented in the lab.
        The deliverable to submit is a report (max 5 pages including figures/tables and references) to 
        describe and discuss the training simulations done and their context within robotics research and 
        applications. The report must also include the link to the Code/Notebook, or add the code as 
        appendix (the Code Appendix is in addition to the 5 pages of the core report). Do not use AI/LLM 
        models to generate your report. Demonstrate a credible analysis and discussion of your own 
        simulation setup and results, not of generic CNN simulations. And demonstrate a credible, 
        personalised analysis of the literature backed by cited references.
        COMP34212 Cognitive Robotics Angelo Cangelosi 
        Marking Criteria (out of 30)
        1. Contextualisation and state of the art in robotics and deep learning, with proper use of 
        citations backing your academic review and statements (marks given for 
        clarity/completeness of the overview of the state of the art, with spectrum of deep learning 
        methods considered in robotics; credible personalised critical analysis of the deep learning 
        role in robotics; quality and use of the references cited) [10]
        2. A clear introductory to the DNN classification problem and the methodology used, with 
        explanation and justification of the dataset, the network topology and the hyperparameters 
        chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
        3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity 
        and appropriateness of the network topology; hyperparameter exploration approach; data 
        processing and coding requirements) [4]
        4. Description, interpretation, and assessment of the results on the hyperparameter testing 
        simulations; include appropriate figures and tables to support the results; depth of the 
        interpretation and assessment of the quality of the results (the text must clearly and 
        credibly explain the data in the charts/tables); Discussion of alternative/future simulations 
        to complement the results obtained) [13]
        5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if 
        code/notebook (link to external repository or as appendix) is not included.
        Due Date: 27 March 2025, 18:00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



         

        掃一掃在手機打開當前頁
      1. 上一篇:出評 開團工具
      2. 下一篇:INFO20003代做、代寫SQL編程設計
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        国产在线精品观看免费观看| 国产99久久久国产精品~~牛| 国产精品网站在线观看| 日韩精品少妇无码受不了| 青青草国产精品久久 | 午夜精品成年片色多多| 亚洲乱码精品久久久久..| 国产农村妇女毛片精品久久| 日本免费精品一区二区三区 | 免费视频成人国产精品网站| 四虎永久在线精品免费影视 | 日韩人妻高清精品专区| 6080日韩午夜伦伦午夜伦| 国产精品三级国语在线看| 国产精品色午夜免费视频| 国产69精品麻豆久久久久| 久久精品国产亚洲av品善| 亚洲日韩精品国产一区二区三区| 911精品国产自产在线观看| 国产福利在线观看精品| 久久精品国产亚洲AV久| 亚洲一区二区三区精品视频| 亚洲精品国产福利片| 亚洲国产精品久久久久秋霞影院| 337p日本欧洲亚洲大胆精品555588| 日韩欧精品无码视频无删节 | 亚洲国产日韩成人综合天堂| 国产成人精品免费直播| 国产在热线精品视频国产一二| 国产亚洲精品精品精品| 中文字幕亚洲日韩无线码| 亚洲精品色午夜无码专区日韩 | 国产成人精品日本亚洲网站 | 亚洲综合一区国产精品| 国产精品无码一区二区三区毛片| 99久久综合精品五月天| 国产精品盗摄一区二区在线| 国产一区精品视频| 竹菊影视欧美日韩一区二区三区四区五区 | 久久精品亚洲一区二区三区浴池| 91精品啪在线观看国产18|