合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代做MATH2110、Java/Python程序語言代寫
        代做MATH2110、Java/Python程序語言代寫

        時間:2025-04-05  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        1 MATH2110
        The University of Nottingham
        SCHOOL OF MATHEMATICAL SCIENCES
        SPRING SEMESTER 2025
        MATH2110 - STATISTICS 3
        Coursework 2
        Deadline: 3pm, Friday 2/5/2025
        Your neat, clearly-legible solutions should be submitted electronically as a pdf file via the MATH2110 Moodle
        page by the deadline indicated there. As this work is assessed, your submission must be entirely your own
        work (see the University’s policy on Academic Misconduct).
        Submissions up to five working days late will be subject to a penalty of 5% of the maximum mark per working
        day.
        Deadline extensions due to Support Plans and Extenuating Circumstances can be requested according to
        School and University policies, as applicable to this module. Because of these policies, solutions (where
        appropriate) and feedback cannot normally be released earlier than 10 working days after the main cohort
        submission deadline.
        The page limit is 8 pages and the minimum font size is 11.
        THE DATA
        As a medical statistician of the 19th century, your task is to assess associations between the fertility of different
        Swiss regions and certain social parameters. The goal is to identify the most influential variables, select the
        best model, and make predictions using it. You have data for 47 regions with the following variables:
        • Fertility, standardised fertility measure.
        • Agriculture, percentage of males involved in agriculture as occupation
        • Examination, percentage draftees receiving highest mark on army examination
        • Education, percentage education beyond primary school for draftees.
        • Catholic, percentage of catholic.
        • Infant.Mortality, normalised proportion of live births who live less than 1 year.
        You can load the data by running the 𝑅 command data(swiss). The only packages that may be used are
        “BayesFactor” and “MASS”.
        MATH2110 Turn Over
        2 MATH2110
        THE TASKS
        First divide the data into a training set (70% - 33 observations) and a test set (30% - 14 observations). All the
        fitting and selection should be done using exclusively the train set. To avoid having correlations during the
        train/test division, use the function sample() to randomly choose both groups.
        All modelling should be using Bayesian Normal linear models and use priors:
        𝛽|𝜎2 ∼ 𝑁 (0, 100Ip
        )
        𝜎
        2 ∼ 𝐼𝐺(2, 2),
        where Ip
        is the 𝑝 × 𝑝 identity matrix and 𝐼𝐺 denotes the inverse-gamma distribution.
        1. Consider the relationship between Examination and Fertility.
        • Perform an exploratory analysis of the relationship between Examination and Fertility.
        • Fit a Bayesian Normal linear model with Fertility as the dependent variable and Examination as the
        independent variable.
        • Write down the selected model posterior.
        • Sample 10 sets of parameters from the posterior distribution and plot the resulting linear model for
        each set of sampled parameters.
        [20 marks]
        2. Consider the relationship between Catholic and Fertility.
        • Perform an exploratory analysis of the relationship between Catholic and Fertility.
        • Create a new variable Catholic.Transform = (Catholic − 𝛼)2
        for a suitable choice of 0 ≤ 𝛼 ≤ 100.
        • Fit a Bayesian Normal linear model with Fertility as the dependent variable and Catholic.Transform
        as the independent variable.
        • Write down the selected model posterior.
        • Using the posterior mean for the parameters of the linear model consider the model fit.
        [25 marks]
        3. Use Bayes Factors to determine which of the models in 1 and 2 best fits the data. [5 marks]
        4. Consider general linear models for modelling Fertility as a function of the covariates.
        • Perform model selection to choose a model and justify your choice of model.
        • Write down the selected model posterior.
        • Draw samples from the corresponding posterior.
        • Present histograms (using function hist()) for the samples of each parameter.
        • Compute estimates of the parameters and compare them.
        • Make predictions for the Fertility values in the test set.
        • Compare these with the real values.
        [50 marks]
        MATH2110 End

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

        掃一掃在手機打開當前頁
      1. 上一篇:天天花卡客服電話-天天花卡24小時客服熱線電話
      2. 下一篇:代寫HIM3002、代做Python編程語言
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 NBA直播 幣安下載

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        亚洲精品成人无码中文毛片不卡| 5555国产在线观看精品| 国产精品国产三级专区第1集| 一本色道久久88综合日韩精品| 国产精品视频免费观看| 黑人无码精品又粗又大又长| 国产SUV精品一区二区四| 亚洲av日韩av天堂影片精品| 日韩免费观看视频| 精品无码国产一区二区三区51安| 久久国产精品亚洲一区二区| 日本精品一区二区三区在线视频一| 国产精品久久毛片完整版| 国产成人精品国内自产拍| 国产精品理论电影| 亚洲精品在线不卡| 精品亚洲一区二区| 亚洲日韩亚洲另类激情文学| 欧亚精品一区三区免费| 亚洲国产精品无码专区影院| 2048亚洲精品国产| 国产精品亚洲综合一区在线观看 | 日韩精品中文字幕视频一区| 青青青国产精品一区二区| 精品久久久久中文字| 亚洲日韩国产精品第一页一区| 欧美精品久久久久a片一二三区| 99re热久久精品这里都是精品| 久久成人国产精品一区二区| 精品一区二区三区在线观看l| 少妇人妻偷人精品无码AV| 国产精品jizz视频| 久久人搡人人玩人妻精品首页| 亚洲日韩在线中文字幕第一页| 中文国产成人精品久久不卡| 五月天婷婷精品视频| 99re6这里有精品热视频在线| 国产精品国产三级国产AV主播| 中文国产成人精品久久96| 亚洲精品无码专区久久同性男| 日韩av片无码一区二区不卡电影|