合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

        AM11編程代做、代寫Python編程語言
        AM11編程代做、代寫Python編程語言

        時間:2025-04-10  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



        Individual Assignment AM11
        1. Project Selection: Choose a problem where you will use at least one out of the 5 
        topics that you have learnt to help solve a problem of your choice (CNN, SVM, Text Mining, 
        PCA, Recommendation Systems). 
        Þ The project should have a well-defined goal, such as classification, clustering, 
        recommendation etc.
        Þ Plagiarism will result in 0 marks (e.g. replication of an existing Kaggle notebook). 
        Your work must be original and well documented to explain your workings.
        Þ The complexity of your project should match the time available for submission.
        Þ The complexity of your work will reflect your grade (e.g. if you decide to work with a 
        dataset that requires PCA pre-processing before classifying with SVM, thus utilising 
        two out of five algorithms that you have learnt).
        2. Dataset: Use an open dataset (e.g., from Kaggle, UCI ML Repository, etc.) or collect 
        your own, ensuring it has enough samples but that it is not too large (you should be able to 
        run your analysis on your laptop). For classification problems, ensure to properly balance 
        your classes. 
        3. Methodology:
        • Explain why the chosen technique is suitable for the problem.
        • Preprocess the data appropriately.
        • Train and evaluate the model using appropriate performance metrics.
        • Compare with at least one baseline model
        4. Implementation (.py or .ipynb):
        • Use Python (with libraries like TensorFlow, Scikit-learn, Pandas, etc.).
        • Ensure reproducibility (seed the random number generator where 
        appropriate, provide a Jupyter Notebook (and its knitted output) or a well-documented .py 
        script).
        5. Report (pdf):
        • Introduction: Explain the problem and dataset. Ensure to supply references. If 
        you can produce your how to use TeX Studio and LaTeX.
        • Methodology: Describe preprocessing, model selection, and training.
        • Results & Discussion: Present evaluation metrics, visualizations, and insights.
        • Conclusion: Summarize the findings and suggest future improvements.
        Your report should be a maximum of 3 pages long, in an Arial 11 font with standard margins.
        Demonstrate the art of concise writing (brevity, economy of words, clarity and precision). 
        Ensure your figure axes labelling and tickers are legible.
        6. Grading Criteria:
        You will be evaluated on both the technical execution and on your ability to communicate 
        your findings. 
        Category Weight Description
        Problem clarity & justification 20% Clearly defines the problem, explains its 
        relevance, and justifies the chosen ML 
        technique.
        Data preprocessing & exploratory 
        analysis
        20% Properly cleans, preprocesses, and 
        visualizes the data; identifies key patterns 
        and challenges.
        Model selection, training, and 
        evaluation
        30% Implements an appropriate model, explains 
        parameter choices, evaluates performance 
        with meaningful metrics, and compares with 
        a baseline.
        Interpretation & discussion of 
        results
        20% Provides insightful analysis, interprets 
        results, discusses limitations, and suggests 
        improvements.
        Code quality & reproducibility 10% Code is well-documented, structured, and 
        reproducible; submission includes a Jupyter 
        Notebook or well-commented script.

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



         

        掃一掃在手機打開當前頁
      1. 上一篇:代寫MEC 302、代做python編程設(shè)計
      2. 下一篇:莆田衣服十大良心微商推薦,莆田十大良心微商排行榜合集!
      3. 無相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發(fā)動機性能
        挖掘機濾芯提升發(fā)動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網(wǎng)400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網(wǎng)
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務電話2
        美的熱水器售后服務技術(shù)咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術(shù)咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 短信驗證碼 酒店vi設(shè)計 投資移民

        關(guān)于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號-3 公安備 42010502001045

        人妻少妇看A偷人无码精品视频| 亚洲精品免费在线观看| 中日韩美中文字幕| 国产精品一在线观看| 亚洲国产精品免费观看| 91久久精品视频| 99久久免费精品高清特色大片| 国产精品免费AV片在线观看| 日韩A∨精品日韩在线观看| 国产免费久久精品丫丫| d动漫精品专区久久| 女人高潮内射99精品| 无码专区人妻系列日韩精品少妇| 国产精品jvid在线观看| 国产精品蜜臂在线观看| 精品剧情v国产在免费线观看| 人妻少妇精品无码专区漫画| 亚洲精品中文字幕| 亚洲爆乳精品无码一区二区| 香蕉久久夜色精品国产尤物| 69SEX久久精品国产麻豆| 国产精品久久波多野结衣| 91大神精品全国在线观看| 精品无码AV一区二区三区不卡| 99精品国产在这里白浆| 日韩av无码久久精品免费| 久久99九九99九九精品| 无码日韩人妻精品久久蜜桃| 亚洲第一极品精品无码久久| 国产精品国产三级国产av品爱网| 久久精品国产秦先生| 久久伊人精品青青草原高清| 国产精品人人爽人人做我的可爱| 久久精品国产成人| 亚洲国产精品婷婷久久| 99aiav国产精品视频| 91精品国产网曝事件门| 亚洲国产精品成人综合色在线婷婷 | 国产精品国产AV片国产| 99精品全国免费观看视频| 夜夜精品视频一区二区|