合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        STAT4602代寫、代做Java/Python編程
        STAT4602代寫、代做Java/Python編程

        時(shí)間:2025-04-26  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        STAT4602 Multivariate Data Analysis Assignment 2
        Hand in solutions for ALL questions by April 23 (Wednesday), 2025,
        11:59pm
        1. The file IRIS.DAT gives a dataset containing 4 measurements for 3 species
        of iris. In the dataset, each row corresponds to one observation. The first 4
        columns gives the 4 measurements, and the last column takes values 1, 2, 3,
        corresponding to the 3 species of iris.
        (a) Perform multivariate regression for each species separately, treating the
        two sepal measures (x1 and x2) as response variables, and the two petal
        measures (x3 and x4) as indepedent variables. Report the fitted models.
        (b) For the species “versicolour” (serial number 2), test whether the two sets of
        regression coefficients (excluding intercepts) are the same in the regression
        equations for x1 and for x2.
        (c) Consider a multivariate linear model as in (a), but incorporate the
        3 species in the model with the aid of additional dummy variables.
        Specifically, intorduce new variables:
        • s ∈ {0, 1}: s = 1 if species = 1, and s = 0 otherwise.
        • v ∈ {0, 1}: v = 1 if species = 2, and v = 0 otherwise.
        • sx3 = s · x3: sx3 = x3 if species = 1, and sx3 = 0 otherwise.
        • sx4 = s · x4: sx4 = x4 if species = 1, and sx4 = 0 otherwise.
        • vx3 = v · x3: vx3 = x3 if species = 2, and vx3 = 0 otherwise.
        • vx4 = v · x4: vx4 = x4 if species = 2, and vx4 = 0 otherwise.
        Perform the regression and test the hypothesis that the 3 species have
        the same model.
        (d) For a input with species = 1, 2, 3, is the model obtained in (c) equivalent
        to the 3 separate multivariate regression models obtained in (a)?
        2. Consider the data given by CORKDATA.sas in Question 1 of Assignment 1:
        N E S W N E S W
        72 66 76 77 91 79 100 75
        60 53 66 63 56 68 47 50
        56 57 64 58 79 65 70 61
        41 29 36 38 81 80 68 58
        32 32 35 36 78 55 67 60
        30 35 34 26 46 38 37 38
        39 39 31 27 39 35 34 37
        42 43 31 25 32 30 30 32
        37 40 31 25 60 50 67 54
        33 29 27 36 35 37 48 39
        32 30 34 28 39 36 39 31
        63 45 74 63 50 34 37 40
        54 46 60 52 43 37 39 50
        47 51 52 45 48 54 57 43
        (a) Find the principal components based on the covariance matrix. Interpret
        them if possible.
        HKU STAT4602 (2024-25, Semester 2) 1
        STAT4602 Multivariate Data Analysis Assignment 2
        (b) How many principal components would you suggest to retain in
        summarizing the total variability of the data? Give reasons, including
        results of statistical tests if appropriate.
        (c) Repeat (a) and (b) using the correlation matrix instead.
        (d) Compare and comment on the two sets of results for covariance and
        correlation matrices. Recommend a set of results and explain why.
        3. Annual financial data are collected for bankrupt firms approximately 2 years
        prior to their bankruptcy and for financially sound firms at about the same
        time. The data on four variables, X1 = (cash flow) / (total debt), X2 = (net
        income) / (total assets), X3 = (current assets) / (current liabilities) and X4 =
        (current assets) / (net sales) are stored in the file FINANICALDATA.TXT. In
        addition, a categorical variable Y identifies whether a firm is bankrupt (Y = 1)
        or non-bankrupt (Y = 2).
        (a) Apply the linear discriminant analysis (LDA) to classify the firms into
        a bankrupt group and a non-bankrupt group. Calculate the error rates
        with cross-validation and report the results.
        (b) Apply quadratic discriminant analysis (QDA) to classify the firms,
        perform cross-validation and report the results.
        4. The distances between pairs of five items are as follows:
        Cluster the five items using the single linkage, complete linkage, and average
        linkage hierarchical methods. Compare the results.
        5. Consider multivariate linear regression with the following data structure:
        individual Y1 Y2 · · · Yp X1 X2 · · · Xk
        1 y11 y12 · · · y1p x11 x12 · · · x1k
        2 y21 y22 · · · y2p x21 x22 x2k
        n yn1 yn2 · · · ynp xn1 xn2 · · · xnk
        The regression model is given as
        Y
        n×p
        = Xn×k
        B
        k×p
        + Un×p
        ,
        HKU STAT4602 (2024-25, Semester 2) 2
        STAT4602 Multivariate Data Analysis Assignment 2
        where the matrices Y , X, B and U are given as follows:
        Here for i = 1, . . . , n, the vector of errors of observation i is εi =
        (εj1, εj2, · · · , εjp)

        , and we assume that ε1, . . . , εn
        iid∼ Np(0, Σ).
        (a) We know that the maximum likelihood estimator of B and Σ are:
        Bˆ = (X′X)
        −1 X′Y , Σˆ =
        1
        n


        Uˆ , where Uˆ = Y − XBˆ .
        Calculate the maximum value of the log-likelihood function
        ℓ(B, Σ) = −
        np
        2
        log(2π) −
        n
        2
        log |Σ| − 1
        2
        tr[(Y − XB)Σ
        −1
        (Y − XB)

        ]
        = −
        np
        2
        log(2π) −
        n
        2
        log |Σ| − 1
        2
        tr[Σ
        −1
        (Y − XB)

        (Y − XB)].
        (b) Plug in the definition of Bˆ and express Uˆ as a matrix calculated based
        on X and Y . Calculate X⊤Uˆ and Uˆ

        X.
        (c) Prove the identity
        (Y − XB)

        (Y − XB)
        = (Y − XBˆ )

        (Y − XBˆ ) + (XBˆ − XB)

        (XBˆ − XB).
        Hint: by definition, Y − XBˆ = Uˆ , and we have
        (Y − XB)

        (Y − XB)
        = (Y − XBˆ + XBˆ − XB)

        (Y − XBˆ + XBˆ − XB).
        6. Consider p random variables X1, . . . , Xp. Suppose that Y1, . . . , Yp are the first
        to the p-th population principle components of X1, . . . , Xp.
        (a) What are the population principle components of the random variables
        Y1, . . . , Yp? Why?
        (b) Suppose that the population covariance matrix of (X1, . . . , Xp)

        is Σ and
        its eigenvalue decomposition is
        Σ =
        p
        X
        i=1
        λiαiα

        i
        ,
        where α1, . . . , αp are orthogonal unit vectors. What is the covariance
        bewteen X1 and Y1?
        7. Consider a k-class classification task with ni observations in class i, i =
        1, . . . , k. Define matrices
        H =
        k
        X
        j=1
        nj (x¯·j − x¯··)(x¯·j − x¯··)

        , E =
        k
        X
        j=1
        nj
        X
        i=1
        (xij − x¯·j )(xij − x¯·j )

        , S =
        n
        E
        − k
        .
        HKU STAT4602 (2024-25, Semester 2) 3
        STAT4602 Multivariate Data Analysis Assignment 2
        In LDA for multiclass classification, we consider the eigenvalue decompostion
        E
        −1Hai = ℓiai
        , i = 1, . . . , s, s = rank(E
        −1H).
        where a1, . . . , as satisfy a

        iSai = 1 and a

        iSai
        ′ = 0 for all i, i′ = 1, . . . , s, i = i

        .
        (a) While the above definitions were introduced in the case of multiclass
        classification (k > 2), we may check to what extent these definitions are
        reasonable in binary classification (k = 2). In this case, we have the
        sample means within class 1 and class 2 as x¯·1 and x¯·2 respectively. Can
        you calculate the overall mean x¯·· based on x¯·1, x¯·2 and n1, n2?
        (b) For k = 2, express H as a matrix calculated based on x¯·1, x¯·2 and n1, n2.
        (c) What is the rank of the matrix H when k = 2?
        (d) We mentioned in the lecture that we can simply use one Fisher
        discriminant function for binary classification. Can we adopt the
        definitions above to define more than one Fisher discriminant functions
        for binary classification? Why?
        HKU STAT4602 (2024-25, Semester 2) 4

        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



         

        掃一掃在手機(jī)打開當(dāng)前頁
      1. 上一篇:STAT4602代寫、代做Java/Python編程
      2. 下一篇:代做 ECE391、代寫 C/C++設(shè)計(jì)編程
      3. 無相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        出評(píng) 開團(tuán)工具
        出評(píng) 開團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)400(全國(guó)服務(wù)熱線)
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話24小時(shí)服務(wù)熱線
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話2
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國(guó)24小時(shí)客服熱線
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國(guó)24小時(shí)
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
      4. 短信驗(yàn)證碼 酒店vi設(shè)計(jì)

        日韩一区二区免费视频| 国内精品久久久久久无码不卡| 久久久国产精品福利免费| 国产av无码专区亚洲国产精品| 亚洲日韩人妻第一页| 国产精品第一页爽爽影院| 9久9久女女免费精品视频在线观看| 91久久亚洲国产成人精品性色| 久久99热成人精品国产| 国产精品国色综合久久| 国产伦精品一区二区三区| 日本精品高清一区二区| 三上悠亚日韩精品| 精品国产亚洲一区二区在线观看| 精品一区二区三区电影| 国产自啪精品视频网站丝袜| 一本色道久久88综合亚洲精品高清| 亚洲av日韩av激情亚洲| 国产精品久久二区二区| 99re在线这里只有精品免费| www亚洲精品少妇裸乳一区二区| 视频一区视频二区日韩专区| 国产精品久久久精品三级| 国产精品国产色综合色| 精品国产免费一区二区| 成人精品视频一区二区三区尤物 | 亚洲欧美日韩国产精品一区| 国产精品毛片久久久久久久| 精品国产福利在线观看| 国产成人精品日本亚洲专区6| 国产91精品在线观看| 亚洲精品人成网在线播放影院| 免费精品国偷自产在线在线| 亚洲精品自偷自拍无码| 久久精品无码一区二区三区不卡| 九九热在线视频精品| 精品综合久久久久久99| 国产精品午夜在线播放a| 日韩精品一区二区午夜成人版| 日韩免费高清大片在线| 国产日韩美国成人|