合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        ECE371編程代做、代寫Python程序設(shè)計
        ECE371編程代做、代寫Python程序設(shè)計

        時間:2025-05-08  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



        ECE371 Neural Networks and Deep Learning
        Assignment 1: Image classification by using deep models
        Due Date: 23:59, 14
        th May, 2025
        This assignment aims to train models for flower classification. You can choose either Colab online
        environment or local environment. This assignment will worth 15% ofthe final grade. Exercise 1: Fine-tune classification model using MMClassification (50%)
        Please complete the fine-tune training based on the pre-training model provided by MMClassification
        (https://github.com/open-mmlab/mmpretrain/tree/1.x). You should:
        1. Prepare the flower datasets. The flower pictures are provided in flower_dataset.zip. The flower dataset contains flowers from 5 categories: daisy 588, dandelion 556, rose 583, sunflower 536 and tulip 585. Please split the dataset into training set and validation set in a ratio
        of 8:2, and organize it into ImageNet format. Detailed steps:
        1) Put the training set and validation set under folders named ‘train’ and ‘val’. 2) Create and edit the category name file. Please write all names flower categories into file
        ‘classes.txt’with each line representing one class. 3) Generate training (optional) and validation sets annotation lists: ‘train.txt’and ‘val.txt’. Each line should contain a filename and its corresponding annotation. Example:
        daisy/NAME**.jpg 0
        daisy/NAME**.jpg 0
        ... dandelion/NAME**.jpg 1
        dandelion/NAME**.jpg 1
        ... rose/NAME**.jpg 2
        rose/NAME**.jpg 2
        ... sunflower/NAME**.jpg 3
        sunflower/NAME**.jpg 3
        ... tulip/NAME**.jpg 4
        tulip/NAME**.jpg 4
        The final file structure should be:
        flower_dataset
        |--- classes.txt
        |--- train.txt
        |--- val.txt
        | |--- train
        | | |--- daisy
        |
        |
        |--- …
        --- dandelion
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        --- rose
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        --- sunflower
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        --- tulip
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        val --- daisy
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        --- dandelion
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        --- rose
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        --- sunflower
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        --- tulip
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        This process can be done using Python or other scripting programs. And it can be completed
        locally/offline to save the Colab’s time online. Once the dataset has been prepared, please migrate the processed dataset to the project folder, (e.g., ./data). To reduce duplicate uploads, you can Sync the data to google drive
        |--- NAME1.jpg
        |--- NAME2.jpg

        and import it in Colab. 2. Modify the configuration file
        Use the _base_ inheritance mechanism to build profiles for fine-tuning, which can be inherited
        and modified from any ImageNet-based profile provided by MMClassification. 1) Modify the model configuration. Change the category header to adapt the model to the
        number of data categories in our flower dataset. 2) Modify the dataset configuration. Change the data paths for the training set, validation set, the list of dataset annotations, and the category name file. And modify the evaluation method
        to use only the top-1 classification error rate. 3) Modify learning rate strategy. Fine-tuning generally uses a smaller learning rate and fewer
        training period. Therefore please change them in configuration file. 4) Configuring pre-trained models. Please find the model file corresponding to the original
        configuration file from Model Zoo. Then download it to Colab or your local environment
        (usually in the checkpointsfolder). Finally you need to configure the path to the pre-trained
        model in the configuration file. 3. Complete the finetune training using tools. Please use tools/train.py to fine-tune the model and specify the work path via the work_dir
        parameter, where the trained model will be stored. Tune the parameters, or use a different pre-trained model to try to get a higher classification
        accuracy. For reference, it is not difficult to achieve classification accuracies above 90% on this
        dataset. Exercise 2: Complete the classification model training script (50%)
        The provided script main.py is a simple PyTorch implement to classify the flower dataset you’ve
        prepared above, but this script is not complete. 1. You’ll be expected to write some code in some code blocks. These are marked at the top of the
        block by a #GRADED FUNCTIONcomment, and you’ll write your code in between the ###
        START SOLUTION HERE ### and ###END SOLUTION HERE### comments. 2. After coding your function, put your flower datasets flower_dataset to the EX2 folder (EX2/
        flower_dataset) and then run this main.py script. 3. If your code is correct, you can obtain the right printed information with loss, learning rate and
        accuracy on validation set, and the best model with the highest validation accuracy will be stored
        in the Ex2/work_dirfolder. 4. You can modify the configuration or the model in main.pyto beat the original result. (optional)
        5. Please write a report with Latex and submit a .pdf file (the main text should not exceed 4
        pages, excluding references). Please use this overleaf template https://www.overleaf.com/read/vjsjkdcwttqp#ffc59a . There are detailed report requirements.
        Submission requirements:
        1. You need to submission all materials to GitHubClassroom. Please create a GitHub account in
        advance. . Later we will provide a link of this assignment, click it and you
        will get an initial repository containing two folders named: Ex1 with flower_dataset.zipin it, and
        Ex2 with main.pyin it. You need to upload all the materials below to your repository:
        1) For exercise 1, please put your configuration file and the saved trained model in Ex1;
        2) For exercise 2, please put your report, completed script file and the saved trained model
        (auto saved in work_dir) in Ex2. 2. Please note that, the teaching assistants may ask you to explain the meaning of the program, to
        ensure that the codes are indeed written by yourself. Plagiarism will not be tolerated. We may
        check your code. 3. The deadline is 23:59 PM, 14
        th May. For each day of late submission, you will lose 10% of your
        mark in corresponding assignment. If you submit more than three days later than the deadline, you
        will receive zero in this assignment. No late submission emails or message will be replied.

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




         

        掃一掃在手機打開當前頁
      1. 上一篇:CPT206代做、代寫Java編程語言
      2. 下一篇:CSC1002代寫、代做Python編程設(shè)計
      3. 無相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發(fā)動機性能
        挖掘機濾芯提升發(fā)動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設(shè)計 NBA直播 幣安下載

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號-3 公安備 42010502001045

        久久精品夜色噜噜亚洲A∨| 日韩免费视频播放| 91精品视频观看| 国产成人亚洲综合无码精品| 久久精品免费大片国产大片| 日韩夜夜高潮夜夜爽无码| 国产在线观看91精品不卡| 在线观看精品视频一区二区三区| 无码人妻精品一区二区三区蜜桃 | 国产高清在线精品一区二区| 日韩高清av在线| 国产精品社区在线观看| 国产微拍精品一区二区| 精品一卡2卡三卡4卡乱码精品视频| 182tv精品视频在线播放| 99热这里只/这里有精品| 久久久这里有精品999| 久久青青成人亚洲精品| 国内精品51视频在线观看| 99精品福利国产在线导航| 国模精品一区二区三区| 久久精品一区二区三区中文字幕| 国产精品xxxx国产喷水亚洲国产精品无码久久一区| 日韩精品中文字幕视频一区 | 久久精品一区二区三区资源网| 久久久国产精品福利免费| 热99re久久国超精品首页| 亚洲国产另类久久久精品小说| 中文字幕精品一区二区精品| 国语自产偷拍精品视频偷蜜芽| 田中瞳中文字幕久久精品| 亚洲精品无码不卡在线播HE| 亚洲国产一成人久久精品| 国内精品久久久久| 久久精品国产一区二区三| 久久er这里只有精品| 亚洲一区精品中文字幕| 69精品久久久久| 久久6这里只有精品| 免费精品国产自产拍在| 久久精品国产亚洲av天美18|