合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

         代寫MCEN30017、代做C++,Java程序
         代寫MCEN30017、代做C++,Java程序

        時間:2024-10-18  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



         Department of Mechanical Engineering
         Mechanics and Materials (MCEN30017)
         Part 2: Finite Element Analysis (FEA)
         Semester 2, 2024
        Assignment 
        Objective: 
        This assignment aims to evaluate students’ ability to use an analytical FEA approach to solve 
        1D/2D structural problems (see examples in lecture notes_ and utilize both Matlab and a 
        commercial FEA package to give a flavor of conducting research to students and prepare them 
        for structural integrity of a modern world engineering problem. 
        Assessment: 
        This assignment constitutes 25% of your total grade. You are required to submit an individual 
        report addressing all the questions. The report must be submitted online through the LMS by 
        Friday, October 18, 2024, at 23:59. 
        The report should be at least 15 pages long, including figures, in a word or pdf document format. 
        Alternatively, you may submit a written report of at least 10 to 12 pages, including figures, 
        accompanied by a 4 to 6-minute video presentation (e.g., a voice-over PowerPoint), explaining 
        your steps for conducting the FEA simulations required for Question 3. 
        We recommend using an equation editor for writing mathematical equations and formulas. 
        However, you may also use clear and legible handwritten equations if preferred. Section 1: FEA analytical approach 
        Question 1. (20 marks) 
        For the plane truss shown in figure 1, determine the horizontal and vertical displacement of node 
        1 and node 2, and calculate the stresses on rods A, B, C. Let Young’s modulus    = 210        & 
        uniform cross-section area    = 4 × 10
        −4
           2
         for all elements. You should demonstrate: 
        a) Calculation of the stiffness matrix for each rod in this figure 
        b) Calculation of displacements on nodes 1 and 2 in both horizontal and vertical directions 
         
        Figure 1 
        Question 2. (20 marks) 
        Most of the engineering problems fall into a category of solution of a partial differential equation 
        (PDE). There are analytical, experimental, and numerical methods to solve these PDEs. Read 
        the following documentation (only the uniaxial tension section) on analytical stress analysis of a 
        circular hole in an infinite plate (you can search for “stress concentrations at holes”). 
        https://www.fracturemechanics.org/hole.html 
        Download the Matlab code for assignment on LMS, or alternatively go through the following 
        MATLAB help center which guides you through simulation of a circular hole in a rectangular 
        strip. 
        https://au.mathworks.com/help/pde/ug/stress-concentration-in-plate-with-circular-hole.html 
        B (4m)
        C (3m)
        F (4m)
        E (4m)
         (3m)
        4000 N
        3000 N

        5Following the instructions, instead of a rectangle, design a square with a circular hole in the 
        middle of it. Call circular hole diameter “d” and square width “w” and use only fine mesh. We 
        know that the analytical solution is not valid anymore if “d/w” parameter is not small enough. 
        a) This is the analytical method to the solution of a PDE. Write a maximum of 2 paragraphs 
        on your understanding of the nature of the problem. (4 marks). 
        b) Iterate multiple times and report the minimum “d/w” in which maximum stress is three 
        (3) times higher than the average stress at the edge of the square. Hint: you can find the 
        average stress on one edge and on the centerline similar to the way stress is defined on 
        the circle (a few lines of code). (8 marks) 
        c) Make a similar geometry in SolidWorks and conduct an FEA analysis. Present both results 
        (8 marks) 
         
        Section 2: FEA numerical approach 
        Question 3 (60 marks) 
        During the tutorial sessions, we have learned how to design and analyze an FEA model. Try to 
        design the model below in SolidWorks and report the required steps to perform a valid simulation 
        for a prosthetic hip joint replacement. You are supposed to generate the backbone of your model 
        first. Subsequently, add fillets and cut-extrudes to the model to generate the final model as 
        proposed in the next page. Keep the 10 mm bottom edge of the model, and its midpoint as a 
        reference to start your design. Each fillet size is simply written as   5 as an example to convey a 
        5 mm fillet.  
         
         The common practice is to use a dynamic load on the joint; however, we simplify the modeling 
        with a 1500 Newtons of load applied to the spherical part of the joint. 
        In your report/video presentation: 
        i) Show how you construct your model (use revolve feature), select your material 
        (Titanium alloy- Titanium (Ti-6Al-4V)). (15 marks) 
        ii) Present the boundary conditions that you use to initiate your simulation. In order not 
        to have a rotation in your model, what type of B.C. you would use, and on what 
        edges/faces? Justify your boundary conditions. (10 marks) 
        iii) Perform a mesh sensitivity analysis and demonstrate the regions of high stress on your 
        model, which require further refinement of mesh. Explain your strategy to refine mesh 
        on high stress/ critical zones and report the appropriate mesh size. (10 marks) 
        iv) Present the regions of high stress in your model based on Von-mises stress. 
        Demonstrate a graph for the region with the highest stress. Are you able to reduce 
        this stress in your model? (10 marks). 
        v) A design engineer has recommended reducing the weight of implant considering a few 
        holes inside the model. Apply a 1 mm fillet for each hole. Develop your model based 
        on the suggested design and conduct a design study to investigate the most appropriate 
        size of the holes in your model. Try holes with a diameter of 6, 8, 10, 12 mm. (15 
        marks)  
        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




         

        掃一掃在手機打開當前頁
      1. 上一篇:MATH36031代做、代寫MATLAB程序語言
      2. 下一篇:廣東深圳廣州最牛的寶寶取名專家公司起名大師最靠譜的聯系電話和微信QQ熱線
      3. · 代寫ICT50220、C++/Java程序語言代做
      4. ·CS2204編程代寫、代做Java程序語言
      5. · ICT50220代做、代寫c++,Java程序設計
      6. ·CS439編程代寫、代做Java程序語言
      7. ·ELX304編程代寫、代做Python/Java程序語言
      8. ·代做NEKN96、代寫c/c++,Java程序設計
      9. ·CRICOS編程代做、代寫Java程序設計
      10. ·MDSB22代做、代寫C++,Java程序設計
      11. ·代寫IK2215、代做java程序語言
      12. ·U6300編程代做、代寫c/c++,Java程序語言
      13. 合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      14. 短信驗證碼 酒店vi設計 NBA直播 幣安下載

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        日本精品VIDEOSSE×少妇| 亚洲精品午夜国产VA久久成人| 久久精品国产亚洲综合色| 超碰97久久国产精品牛牛| 国产午夜无码精品免费看| 亚洲日韩国产一区二区三区| 亚洲精品在线网站| 老司机精品视频在线| 国产精品久久久小说| 久久99热精品这里久久精品| WWW夜片内射视频日韩精品成人| 亚洲国产成人精品久久| 久久精品免费网站网| 国产伦精品一区二区三区四区 | 亚洲欧美日韩综合久久久| 91久久精品国产91性色也| 无码精品人妻一区二区三区中| 人成精品视频三区二区一区| 思思99re66在线精品免费观看 | 人人妻人人澡人人爽人人精品| 无码日韩人妻精品久久| 亚洲色无码国产精品网站可下载| 国产精品水嫩水嫩| 亚洲国产91精品无码专区| 日韩字幕一中文在线综合| 亚洲国产日韩在线成人蜜芽| 免费国产精品视频| 99RE6热在线精品视频观看| 久久精品国产久精国产| 亚洲精品中文字幕无码蜜桃| 国内精品综合久久久40p| 国产丝袜在线精品丝袜| 国产亚洲美女精品久久久2020| 国产日韩精品SUV| 亚洲国产另类久久久精品小说| 三上悠亚日韩精品| 国精品无码A区一区二区| 97久久精品国产精品青草| 国产日韩一区二区三区| 中文字幕日韩一区| 在线视频精品一区|