合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        MATH2033代做、代寫Java,Python編程
        MATH2033代做、代寫Java,Python編程

        時間:2024-12-19  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



        MATH2033 Introduction to Scientific Computation
        — Coursework 2 —
        Submission deadline: 15:00 Friday 20 December 2024
        This coursework contributes 10% towards your mark for this module.
        Rules
        It is not permitted to use generative artificial intelligence (AI) software for this coursework. Ensure that
        you have read and have understood the Policy on academic misconduct. One of the things stated in
        this policy is that “The submission of work that is generated and/or improved by software that is not
        permitted for that assessment, for the purpose of gaining marks will be regarded as false authorship
        and seen as an attempt to gain an unpermitted academic advantage”.
        This coursework should be your own individual work, with the exceptions that:
        1. You may ask for and receive help from the lecturer Richard Rankin although not all questions will be
        answered and those that are will be answered to all students that attend the class.
        2. You may copy from material provided on the Moodle pages:
        • Introduction to Scientific Computation (MATH2033 UNNC) (FCH1 24-25)
        • Analytical and Computational Foundations (MATH1028 UNNC) (FCH1 2**4)
        • Calculus (MATH1027 UNNC) (FCH1 2**4)
        • Linear Mathematics (MATH1030 UNNC) (FCH1 2**4)
        Coding Environment
        You should write and submit a py file. You are strongly encouraged to use the Spyder IDE (integrated
        development environment). You should not write or submit an ipynb file and so you should not use
        Jupyter Notebook.
        It will be assumed that numpy is imported as np, and that matplotlib.pyplot is imported as plt.
        Submission Procedure:
        To submit, upload your linear systems.py file through the Coursework 2 assignment activity in the
        Coursework 2 section of the Moodle page Introduction to Scientific Computation (MATH2033 UNNC)
        (FCH1 24-25).
        Marking
        Your linear systems.py file will be mainly marked by running your functions with certain inputs and comparing
         the output with the correct output.
        Department of Mathematical Sciences Page 1 of 51. The linear systems.py file contains an unfinished function with the following first line:
        def smax (w ,s , i ) :
        Assume that:
        • The type of the input w is numpy.ndarray.
        • The type of the input s is numpy.ndarray.
        • The type of the input i is int.
        • There exists an int n such that the shape of w is (n,) and the shape of s is (n,).
        • The input i is a nonnegative integer that is less than n.
        Complete the function smax so that it returns an int p which is the smallest integer for which
        i ≤ p < n
        and
        |w[p]|
        s[p]
         = max
        j∈{i,i+1,...,n−1}
        |w[j]|
        s[j]
        .
        A test that you can perform on your function smax is to run the Question 1 cell of the tests.py file
        and check that what is printed is:
        1
        [20 marks]
        Coursework 2 Page 2 of 52. Suppose that A ∈ R
        n×n, that det(A) 6= 0 and that b ∈ R
        n.
        The linear systems.py file contains an unfinished function with the following first line:
        def spp (A ,b , c ) :
        Assume that:
        • The type of the input A is numpy.ndarray.
        • The type of the input b is numpy.ndarray.
        • The type of the input c is int.
        • There exists an int n such that n > 1, the shape of A is (n,n) and the shape of b is (n,1).
        • The input A represents A.
        • The input b represents b.
        • The input c is a positive integer that is less than n.
        Complete the function spp so that it returns a tuple (U, v) where:
        • U is a numpy.ndarray with shape (n,n) that represents the matrix comprised of the first n
        columns of the matrix arrived at by performing forward elimination with scaled partial pivoting
        on the matrix 
        A b 
        until all of the entries below the main diagonal in the first c columns are
        0.
        • v is a numpy.ndarray with shape (n,1) that represents the last column of the matrix arrived at
        by performing forward elimination with scaled partial pivoting on the matrix 
        A b 
        until all of
        the entries below the main diagonal in the first c columns are 0.
        A test that you can perform on your function spp is to run the Question 2 cell of the tests.py file
        and check that what is printed is:
        [[ 10. 0. 20.]
        [ 0. -5. -1.]
        [ 0. 10. -11.]]
        [[ 70.]
        [ -13.]
        [ -13.]]
        [30 marks]
        Coursework 2 Page 3 of 53. Suppose that A ∈ R
        n×n, that det(A) 6= 0, that all of the entries on the main diagonal of A are
        nonzero and that b ∈ R
        n. Let x ∈ R
        n be the solution to Ax = b. Let x
        (k) be the approximation
        to x obtained after performing k iterations of the Gauss–Seidel method starting with the initial
        approximation x
        (0)
        .
        The linear systems.py file contains an unfinished function with the following first line:
        def GS (A ,b ,g ,t , N ) :
        Assume that:
        • The type of the input A is numpy.ndarray.
        • The type of the input b is numpy.ndarray.
        • The type of the input g is numpy.ndarray.
        • The type of the input t is numpy.float64, float or int.
        • The type of the input N is int.
        • There exists an int n such that the shape of A is (n,n), the shape of b is (n,1) and the shape
        of g is (n,1).
        • The input A represents A.
        • The input b represents b.
        • The input g represents x
        (0)
        .
        • The input t is a real number.
        • The input N is a nonnegative integer.
        Complete the function GS so that it returns a tuple (y, r) where:
        • y is a numpy.ndarray with shape (n, M + 1) which is such that, for j = 0, 1, . . . , n − 1,
        y[j, k] =x
        (k)
        j+1 for k = 0, 1, . . . , M where M is the smallest nonnegative integer less than N for
        which
        is less than t if such an integer M exists and M = N otherwise.
        • r is a bool which is such that r = True if
        is less than t and r = False otherwise.
        A test that you can perform on your function GS is to run the Question 3 cell of the tests.py file and
        check that what is printed is:
        [[ 0. 12. 12.75 ]
        [ 0. 3. 3.9375 ]
        [ 0. 6.75 6.984375]]
        False
        [25 marks]
        Coursework 2 Page 4 of 54. Suppose that A ∈ R
        n×n, that det(A) 6= 0, that all of the entries on the main diagonal of A are
        nonzero and that b ∈ R
        n. Let x ∈ R
        n be the solution to Ax = b. Let x
        (k) be the approximation
        to x obtained after performing k iterations of the Gauss–Seidel method starting with the initial
        approximation x
        (0)
        .
        The linear systems.py file contains an unfinished function with the following first line:
        def GS_plot (A ,b ,g ,x , N ) :
        Assume that:
        • The type of the input A is numpy.ndarray.
        • The type of the input b is numpy.ndarray.
        • The type of the input g is numpy.ndarray.
        • The type of the input x is numpy.ndarray.
        • The type of the input N is int.
        • There exists an int n such that the shape of A is (n,n), the shape of b is (n,1), the shape of g
        is (n,1) and the shape of x is (n,1).
        • The input A represents A.
        • The input b represents b.
        • The input g represents x
        (0)
        .
        • The input x represents x.
        • The input N is a nonnegative integer.
        Complete the function GS plot so that it returns a matplotlib.figure.Figure, with an appropriate
        legend and a single pair of appropriately labelled axes, on which there is a semilogy plot
        of:
        A test that you can perform on your function GS plot is to run the Question 4 cell of the tests.py
        file.
        [25 marks]
        Coursework 2 Page 5 of 5

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


         

        掃一掃在手機打開當(dāng)前頁
      1. 上一篇:代做COMP2012J、java編程語言代寫
      2. 下一篇:DSCI 510代寫、代做Python編程語言
      3. ·代做DI11004、Java,Python編程代寫
      4. ·03CIT4057代做、代寫c++,Python編程
      5. ·代寫CHEE 4703、代做Java/Python編程設(shè)計
      6. ·代做INT2067、Python編程設(shè)計代寫
      7. ·CS 7280代做、代寫Python編程語言
      8. ·CSCI 201代做、代寫c/c++,Python編程
      9. ·代寫G6077程序、代做Python編程設(shè)計
      10. ·代做COMP SCI 7412、代寫Java,python編程
      11. ·代做COMP642、代寫Python編程設(shè)計
      12. ·代寫CSSE7030、代做Python編程設(shè)計
      13. 合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發(fā)動機性能
        挖掘機濾芯提升發(fā)動機性能
        戴納斯帝壁掛爐全國售后服務(wù)電話24小時官網(wǎng)400(全國服務(wù)熱線)
        戴納斯帝壁掛爐全國售后服務(wù)電話24小時官網(wǎng)
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話24小時服務(wù)熱線
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話2
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時客服熱線
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      14. 短信驗證碼 酒店vi設(shè)計

        精品人妻无码一区二区三区蜜桃一| 国产精品无码2021在线观看| 99久久国产综合精品麻豆| 精品国产自在久久| 久久精品国产亚洲AV麻豆~| 国产亚洲女在线线精品| 91精品国产一区| 久久精品国产亚洲夜色AV网站| 国产午夜亚洲精品理论片不卡| 国产视频精品久久| 日韩精品专区在线影院重磅| 久久精品国产久精国产一老狼| 99精品热线在线观看免费视频| 国产成人精品福利网站在线观看| 亚欧日韩毛片在线看免费网站| 国产精品久久久久9999赢消| 精品国产一区二区三区免费看| 亚洲精品无码久久久久YW| 狠狠色香婷婷久久亚洲精品| 真实国产乱子伦精品免费| 久久久久久亚洲精品成人| 久久99精品久久久久久噜噜| 亚洲午夜福利精品无码| 亚洲国产精品自产在线播放| 午夜国产精品无套| 一本久久a久久精品综合香蕉| 精品在线一区二区三区| 日韩a视频在线观看| 日韩激情淫片免费看| 日韩视频一区二区在线观看| 日韩免费无码视频一区二区三区| 日韩经典精品无码一区| 日韩美无码五月天| 无码精品日韩中文字幕| 亚洲日韩一区二区三区| 亚洲日韩国产二区无码| 免费看一级毛片在线观看精品视频| 无码国产亚洲日韩国精品视频一区二区三区| 精品女同一区二区| 精品无码国产污污污免费网站国产 | 亚洲日韩小电影在线观看|