合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代做CAP 4611、代寫C/C++,Java程序
        代做CAP 4611、代寫C/C++,Java程序

        時間:2025-04-28  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        Final Exam
        Instructor: Amrit Singh Bedi
        Instructions
        This exam is worth a total of 100 points. Please answer all questions clearly
        and concisely. Show all your work and justify your answers.
        • For Question 1 and 2, please submit the PDF version of your solution
        via webcourses. You can either write it in latex or do it on paper and
        submit the scanned version. But if you do it on paper and scan it,
        you are responsible for ensuring it is readable and properly scanned.
        There will be zero marks if it is not clearly written or scanned.
        • The total time to complete the exam is 24 hours and it is due at 4:00
        pm EST, Friday (April 25th, 2025). This is a take-home exam. Please
        do not use AI like ChatGPT to complete the exam. There are zero
        marks if found (believe me, we would know if you use it).
        Question 1 50 marks
        Context: In supervised learning, understanding the bias-variance tradeoff
        is crucial for developing models that generalize well to unseen data.
        Problem 1 10 marks
        Define the terms bias, variance, and irreducible error in the context of su pervised learning. Explain how each contributes to the total expected error
        of a model.
        1
        Problem 2 20 marks
        Derive the bias-variance decomposition of the expected squared error for a
        regression problem. That is, show that:
        ED,ε[(y − f
        ˆ(x))2
        ] =  Bias[f
        ˆ(x)]
        2
        + Var[f
        ˆ(x)] + σ
        2
        where f
        ˆ(x) is the prediction of the model trained on dataset D, y = f(x)+ε,
        and σ
        2
        is the variance of the noise ε.
        Hint: You can start by taking y = f(x) + ε, where E[ε] = 0, and
        Var[ε] = σ
        2
        . Let f
        ˆ(x) be a learned function from the training set D. Then
        proceed towards the derivation.
        Problem 3 10 marks
        Consider two models trained on the same dataset:
        • Model A: A simple linear regression model.
        • Model B: A 10th-degree polynomial regression model.
        Discuss, in terms of bias and variance, the expected performance of each
        model on training data and unseen test data. Which model is more likely
        to overfit, and why?
        Problem 4 10 marks
        Explain how increasing the size of the training dataset affects the bias and
        variance of a model. Provide reasoning for your explanation. (10 marks)
        Question 2: Using Transformer Attention 50
        marks
        Context. Consider a simplified Transformer with a vocabulary of six to kens:
        • I (ID 0): embedding  1.0, 0.0

        • like (ID 1): embedding  0.0, 1.0

        • to (ID 2): embedding  1.0, 1.0

        2
        • eat (ID 3): embedding  0.5, 0.5

        • apples (ID 4): embedding  0.6, 0.4

        • bananas (ID 5): embedding  0.4, 0.6

        All three projection matrices are the 2 × 2 identity:
        WQ = WK = WV = I2.
        When predicting the next token, the model uses masked self-attention: the
        query comes from the last position, while keys and values come from all
        previous tokens. (Note: show step by step calculation for all questions
        below)
        (a) (10 marks) For the input sequence [I, like, to] (IDs [0, 1, 2]),
        compute the query, key and value vectors for each token.
        (b) (15 marks) Let Q be the query of the last token and K, V the keys
        and values of all three tokens.
        • Compute the row vector of raw attention scores qK⊤, where q is
        the query of the last token and K is the 3×2 matrix of keys. .
        • Scale by √
        dk (with dk = 2) and apply softmax to obtain attention
        weights.
        • Compute the context vector as the weighted sum of the values.
        (c) (15 marks) Given the context vector c ∈ R
        2
        from part (b), com pute the unnormalized score for each vocabulary embedding via c ·
        embed(w), i.e. dot-product.
        • Apply softmax over these six scores to get a probability distribu tion.
        • Which token has the highest probability? [Note: Because the six
        embeddings are synthetic and not trained on real text, the token
        that receives the highest probability may look ungrammatical in
        normal English; this is an artifact of the toy setup.]
        (d) (10 marks) Explain why the model selects the token you found in
        (c). In your answer, discuss:
        • How the attention weights led to that choice.
        • Explain why keys/values may include the current token but never
        future tokens .
        3

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

        掃一掃在手機打開當前頁
      1. 上一篇:代做ISYS1001、代寫C++,Java程序
      2. 下一篇:FINM7406代做、代寫Java/Python編程
      3. ·代做ISYS1001、代寫C++,Java程序
      4. ·代做COMP2221、代寫Java程序設計
      5. ·代寫MATH3030、代做c/c++,Java程序
      6. ·COMP 5076代寫、代做Python/Java程序
      7. ·代寫COP3503、代做Java程序設計
      8. ·COMP3340代做、代寫Python/Java程序
      9. ·COM1008代做、代寫Java程序設計
      10. ·MATH1053代做、Python/Java程序設計代寫
      11. ·CS209A代做、Java程序設計代寫
      12. ·ITC228編程代寫、代做Java程序語言
      13. 合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      14. 短信驗證碼 酒店vi設計

        国产午夜精品一区理论片| 日韩精品内射视频免费观看| 91大神精品网站在线观看| 日韩精品在线视频| 国产亚洲精品免费视频播放| 国产成人精品怡红院在线观看| 日韩成人免费视频播放| 成人日韩熟女高清视频一区| 国产精品国语对白露脸在线播放 | 凹凸精品视频分类国产品免费| 色哟哟精品视频在线观看| 久久这里的只有是精品23| 99久热任我爽精品视频| 精品福利一区二区三区免费视频 | 亚洲国产精品日韩在线观看 | 日韩毛片免费一二三| 国产精品99久久久| 国产精品久久久久久亚洲小说 | 久章草在线精品视频免费观看| 538prom精品视频线放| 日韩精品无码视频一区二区蜜桃| 国产一区二区三区精品视频| 东京热TOKYO综合久久精品| 国语自产精品视频在线观看| 国产亚洲精品免费视频播放| 99re这里只有精品国产精品| 在线精品自拍无码| 精品亚洲永久免费精品| 久久精品中文字幕免费| 十八18禁国产精品www| 99精品视频免费观看| 亚洲精品成人图区| 国产精品视频yuojizz| 四虎永久在线精品波多野结衣| 亚洲国产精品嫩草影院| 国产成人久久精品77777综合| 国产精品熟女视频一区二区| vvvv99日韩精品亚洲| 精品在线一区二区| 国产精品污WWW一区二区三区| 久久精品亚洲乱码伦伦中文|