合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

        代做CAP 4611、代寫C/C++,Java程序
        代做CAP 4611、代寫C/C++,Java程序

        時間:2025-04-28  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



        Final Exam
        Instructor: Amrit Singh Bedi
        Instructions
        This exam is worth a total of 100 points. Please answer all questions clearly
        and concisely. Show all your work and justify your answers.
        • For Question 1 and 2, please submit the PDF version of your solution
        via webcourses. You can either write it in latex or do it on paper and
        submit the scanned version. But if you do it on paper and scan it,
        you are responsible for ensuring it is readable and properly scanned.
        There will be zero marks if it is not clearly written or scanned.
        • The total time to complete the exam is 24 hours and it is due at 4:00
        pm EST, Friday (April 25th, 2025). This is a take-home exam. Please
        do not use AI like ChatGPT to complete the exam. There are zero
        marks if found (believe me, we would know if you use it).
        Question 1 50 marks
        Context: In supervised learning, understanding the bias-variance tradeoff
        is crucial for developing models that generalize well to unseen data.
        Problem 1 10 marks
        Define the terms bias, variance, and irreducible error in the context of su pervised learning. Explain how each contributes to the total expected error
        of a model.
        1
        Problem 2 20 marks
        Derive the bias-variance decomposition of the expected squared error for a
        regression problem. That is, show that:
        ED,ε[(y − f
        ˆ(x))2
        ] =  Bias[f
        ˆ(x)]
        2
        + Var[f
        ˆ(x)] + σ
        2
        where f
        ˆ(x) is the prediction of the model trained on dataset D, y = f(x)+ε,
        and σ
        2
        is the variance of the noise ε.
        Hint: You can start by taking y = f(x) + ε, where E[ε] = 0, and
        Var[ε] = σ
        2
        . Let f
        ˆ(x) be a learned function from the training set D. Then
        proceed towards the derivation.
        Problem 3 10 marks
        Consider two models trained on the same dataset:
        • Model A: A simple linear regression model.
        • Model B: A 10th-degree polynomial regression model.
        Discuss, in terms of bias and variance, the expected performance of each
        model on training data and unseen test data. Which model is more likely
        to overfit, and why?
        Problem 4 10 marks
        Explain how increasing the size of the training dataset affects the bias and
        variance of a model. Provide reasoning for your explanation. (10 marks)
        Question 2: Using Transformer Attention 50
        marks
        Context. Consider a simplified Transformer with a vocabulary of six to kens:
        • I (ID 0): embedding  1.0, 0.0

        • like (ID 1): embedding  0.0, 1.0

        • to (ID 2): embedding  1.0, 1.0

        2
        • eat (ID 3): embedding  0.5, 0.5

        • apples (ID 4): embedding  0.6, 0.4

        • bananas (ID 5): embedding  0.4, 0.6

        All three projection matrices are the 2 × 2 identity:
        WQ = WK = WV = I2.
        When predicting the next token, the model uses masked self-attention: the
        query comes from the last position, while keys and values come from all
        previous tokens. (Note: show step by step calculation for all questions
        below)
        (a) (10 marks) For the input sequence [I, like, to] (IDs [0, 1, 2]),
        compute the query, key and value vectors for each token.
        (b) (15 marks) Let Q be the query of the last token and K, V the keys
        and values of all three tokens.
        • Compute the row vector of raw attention scores qK⊤, where q is
        the query of the last token and K is the 3×2 matrix of keys. .
        • Scale by √
        dk (with dk = 2) and apply softmax to obtain attention
        weights.
        • Compute the context vector as the weighted sum of the values.
        (c) (15 marks) Given the context vector c ∈ R
        2
        from part (b), com pute the unnormalized score for each vocabulary embedding via c ·
        embed(w), i.e. dot-product.
        • Apply softmax over these six scores to get a probability distribu tion.
        • Which token has the highest probability? [Note: Because the six
        embeddings are synthetic and not trained on real text, the token
        that receives the highest probability may look ungrammatical in
        normal English; this is an artifact of the toy setup.]
        (d) (10 marks) Explain why the model selects the token you found in
        (c). In your answer, discuss:
        • How the attention weights led to that choice.
        • Explain why keys/values may include the current token but never
        future tokens .
        3

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

        掃一掃在手機打開當前頁
      1. 上一篇:代做ISYS1001、代寫C++,Java程序
      2. 下一篇:FINM7406代做、代寫Java/Python編程
      3. ·代做ISYS1001、代寫C++,Java程序
      4. ·代做COMP2221、代寫Java程序設計
      5. ·代寫MATH3030、代做c/c++,Java程序
      6. ·COMP 5076代寫、代做Python/Java程序
      7. ·代寫COP3503、代做Java程序設計
      8. ·COMP3340代做、代寫Python/Java程序
      9. ·COM1008代做、代寫Java程序設計
      10. ·MATH1053代做、Python/Java程序設計代寫
      11. ·CS209A代做、Java程序設計代寫
      12. ·ITC228編程代寫、代做Java程序語言
      13. 合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
        急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發(fā)動機性能
        挖掘機濾芯提升發(fā)動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      14. 短信驗證碼 酒店vi設計 NBA直播 幣安下載

        關(guān)于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號-3 公安備 42010502001045

        91精品国产综合久久婷婷| 四库影院永久四虎精品国产 | 久久精品国产亚洲AV高清热| 中文字幕日韩精品有码视频| 久久夜色精品国产噜噜| 日韩乱码人妻无码中文字幕久久| 91精品国产91久久久久久| 国产精品成人99久久久久91gav | 国产精品亚洲综合一区在线观看| 久久免费视频精品| 精品3d动漫视频一区在线观看 | 中文字幕无码精品亚洲资源网久久| 久久久亚洲精品蜜桃臀| 国产精品亚洲一区二区三区在线观看 | 亚洲日韩中文在线精品第一 | 日韩精品视频一区二区三区| 国产精品一区二区香蕉| 精品国产一区二区三区av片| 99爱在线精品视频免费观看9| jizz国产精品网站| 国产精品久久久久影视青草| 精品乱码久久久久久中文字幕| 亚洲精品成a人在线观看夫| 日韩精品成人一区二区三区| 欧美日韩精品乱国产| 无码日韩精品一区二区免费| 国产精品久久久久影视不卡| 久久精品国产亚洲网站| 日韩精品人成在线播放| 日韩免费福利视频| 无码日韩人妻精品久久| 国产精品久久波多野结衣| 亚洲另类精品xxxx人妖| 91精品免费久久久久久久久| 91探花国产综合在线精品| 精品久久久久香蕉网| 久久99蜜桃精品久久久久小说| 久久精品视频免费播放| 无码精品人妻一区二区三区漫画 | 中文无码精品A∨在线观看不卡| 国产精品永久免费10000|