合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代寫EE5434、代做c/c++,Java程序
        代寫EE5434、代做c/c++,Java程序

        時間:2024-12-06  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



        EE5434 final project 
         
        Data were available on Nov. 5 (see the Kaggle website) 
        Report and source codes due: 11:59PM, Dec. 6th 
        Full mark: 100 pts. 
         
        During the process, you can keep trying new machine learning models and boost the learning 
        accuracy. 
         
        You are encouraged to form groups of size 2 with your classmates so that the team can 
        implement multiple learning models and compare their performance. If you cannot find any 
        partners, please send a message on the group discussion board and briefly introduce your 
        expertise. If you prefer to do this project yourself, you can get 5 bonus points. 
         
        Submission format: Report should be in PDF format. Source code should be in a notebook file 
        (.ipynb) and also save your source code as a HTML file (.html). Thus, there are three files you 
        need to upload to Canvas. Remember that you should not copy anyone’s codes, which can lead 
        to faisure of this course. 
         
        Files and naming rules: If you have two members in the team, start the file name with G2, 
        otherwise, G1. For example, you have a teammate and the team members are: Jackie Lee and 
        Xuantian Chan, name it as G2-Lee-Chan.xxx. 5 pts will be deducted if the naming rule is not 
        followed. In your report, please clearly show the group members. 
         
        How do we grade your report? We will consider the following factors. 
         
         1. You would get 30% (basic grade) if you correctly applied two learning models to our 
        classification problem. The accuracy should be much better than random guess. Your 
        report is written in generally correct English and is easy to follow. Your report should 
        include clear explanation of your implementation details and basic analysis of the 
        results. 
        2. Factors in grading: 
        a. Applied/implemented and compared at least 2 different models. You show good 
        sense in choosing appropriate models (such as some NLP related models). 
        b. For each model, clear explanation of the feature encoding methods, model 
        structure, etc. Carefully tuned multiple sets of parameters or feature engineering 
        methods. Provided evidence of multiple methods to boost the performance. 
        c. Consider performance metrics beyond accuracy (such as confusion matrix, recall, 
        ROC, etc.). Carefully compare the performance of different 
        methods/models/parameter sets. Being able to present your results using the most 
        insightful means such as tables/figures etc. 
        d. Well-written reports that are easy to follow/read. 
        e. Final ranking on Kaggle.  For each of the factor, we have unsatisfactory (1), acceptable (2), satisfactory (3), good (4), 
        excellent (5). The sum of each factor will determine the grade. For example, student A got 4 
        good and 1 acceptable for a to e. Then, A’s total score is 4*4+2=16. The full mark for a to e is 
        25. So, A’s percentage is 64%. 
         
         
        Note that if the final performance is very close (e.g. 0.65 vs 0.66), the corresponding 
        submissions belong to the same group in the ranking. 
         
        Factors that can increase your grade: 
        1. You used a new learning model/feature engineering method that was not taught in 
        class. This requires some reading and clear explanation why you think this model fits this 
        problem. 
        2. Your model’s performance is much better than others because of a new or optimized 
        method. 
         
        The format of the report 
        1. There is no page limit for the report. If you don’t have much to report, keep it simple. 
        Also, miminize the language issues by proofreading. 
        2. To make our grading more standard, please use the following sections: 
        a. Abstract. Summarize the report (what you done, what methods you use and the 
        conclusions). (less than 300 words) 
        b. Data properties (data explortary analysis). You should describe your 
        understanding/analysis of the data properties. 
        c. Methods/models. In this section, you should describe your implemented models. 
        Provide key parameters. For example, what are the features? If you use kNN, 
        what is k and how you computed the distance? If you use ANN, what is the 
        architecture, etc. You should separate the high-level description of the models 
        and the tuning of hyper-parameters. 
        d. Experimental results. In this section, compare and summarize the results using 
        appropriate tables/figures. Simplying copying screening is acceptable but will 
        lead to low mark for sure. Instead, you should *summarize* your results. You 
        can also compare the performance of your model under different 
        hyperparameters. 
        e. Conclusion and discussion. Discussion why your models perform well or poorly. 
        f. Future work. Discuss what you could do if more time is given. 
        3. For each model you tried, provide the codes of the model with the best performance. In 
        your report, you can detail the performance of this model with different parameters. 
         
        The code 
        The code should include: 
        1. Preprocessing of the data 2. Construction of the model 
        3. Training 
        4. Validation 
        5. Testing 
        6. And other code that is necessary 
         
        This is the link that you need to use to join the competition. 
        https://www.kaggle.com/t/79178536956041b8acb64b6268afb4de 
         
         
         
        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



         

        掃一掃在手機(jī)打開當(dāng)前頁
      1. 上一篇:代寫ENGG1110、代做C++語言編程
      2. 下一篇:COMP2010J代做、代寫c/c++,Python程序
      3. ·MS3251代寫、代做Python/Java程序
      4. ·COMP4134代做、Java程序語言代寫
      5. ·代寫ENG4200、Python/Java程序設(shè)計代做
      6. ·代寫I&C SCI 46 、c/c++,Java程序語言代做
      7. ·CCIT4020代做、代寫c/c++,Java程序設(shè)計
      8. ·代寫COMP2011J、Java程序設(shè)計代做
      9. ·IS3240代做、代寫c/c++,Java程序語言
      10. ·代寫CSE x25、C++/Java程序設(shè)計代做
      11. ·代寫program、代做c++,Java程序語言
      12. · 代寫MCEN30017、代做C++,Java程序
      13. 合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
        出評 開團(tuán)工具
        出評 開團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動機(jī)性能
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場巴士4號線
        合肥機(jī)場巴士4號線
        合肥機(jī)場巴士3號線
        合肥機(jī)場巴士3號線
        合肥機(jī)場巴士2號線
        合肥機(jī)場巴士2號線
        合肥機(jī)場巴士1號線
        合肥機(jī)場巴士1號線
      14. 短信驗證碼 酒店vi設(shè)計 NBA直播 幣安下載

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號-3 公安備 42010502001045

        久久久精品国产sm调教网站| 国产午夜精品一本在线观看| 国产69精品久久久久观看软件| 日韩精品无码一区二区三区不卡| 国产A三级久久精品| 亚洲国产成人乱码精品女人久久久不卡| 凹凸国产熟女精品视频| 精品国产呦系列在线看| 2021久久精品国产99国产精品| 精品一区二区三区在线观看视频| 国产办公室秘书无码精品99| 99精品视频在线| 国产精品狼人久久久久影院 | 亚洲精品色在线网站| 亚洲精品国产日韩| 国产成人精品男人的天堂538| 91精品国产色综合久久不| 久久国产乱子伦精品免费不卡| 国产午夜精品无码| 奇米影视7777久久精品人人爽| 爱看精品福利视频观看| 久久se这里只有精品| 国产乱人伦偷精品视频免观看 | 99re九精品视频在线视频| 亚洲AV永久精品爱情岛论坛| 亚洲国产一二三精品无码| 国产在线观看一区精品| 精品国产AⅤ一区二区三区4区 | 人妻少妇乱子伦精品| 久久精品国产福利电影网| 国产精品熟女高潮视频| 日韩一级精品视频在线观看| 国内精品久久久久影院免费| 久久精品国产亚洲综合色| 久草精品视频在线播放| 久久久久国产成人精品| 人妻少妇乱子伦精品| 亚洲精品美女久久久久9999| 国产成人精品日本亚洲11| 久久久午夜精品福利内容| 99久久免费国产精品特黄 |